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An overview of the talk

▶ What is Fermat’s Last Theorem (FLT)?

▶ Why do we want to formalize the proof of FLT?

▶ Are there people working on the problem as posed?

▶ The first tentative steps towards such a formalization

▶ Levels of partial formalization

▶ What does the proof of FLT look like?

▶ Deligne’s theorem



Fermat’s Last Theorem (FLT) [1]

Fermat’s Last Theorem is a mathematical theorem that states that there are no
three positive integers a, b, and c that satisfy the equation an + bn = cn for
any integer value of n greater than 2.

The theorem was first proposed by Pierre de Fermat around 1637 in the margin
of a copy of Diophantus’s Arithmetica. Fermat added that he had a proof that
was too large to fit in the margin.

His claim was only discovered after his death, by his son.

It is widely believed that Fermat did not have a correct proof of the result at
the time.

In 1994, around 350 years after Fermat’s claim, Andrew Wiles announced a
proof. However, it had a gap which he fixed a year later through joint work
with Taylor.

The quest to prove Fermat’s Last Theorem spurred the development of new
areas in number theory and algebraic geometry.
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Motivation

▶ Freek maintains a list (presumably compiled in the mid-1990s) of 100
theorems for formalizers. Out of these, 99 have been formalized and the
last theorem on the list is Fermat’s Last Theorem.

▶ The technical achievement behind the formalization of the proof of
Fermat’s Last Theorem will not be just the verification of its validity.

It will drive the development of a library (mathlib) that can be used for
modern research where areas of mathematics work concurrently.

▶ Formalizing the proof will identify any weaknesses in current proving
technology.

▶ The definitions formalized in current and future work, will lay the
groundwork for the formalization of results from state-of-the-art number
theory such as the Langlands program.

The deep theorems by Wiles and others can be summarised as special
cases of the “2-dimensional case of the Langlands Philosophy”.
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Recent-ish News

In October 2023, Kevin Buzzard received an EPSRC research grant to begin
working towards a formal proof of Fermat’s Last Theorem in Lean.

The grant buys out his teaching and administration for 5 years starting October
2024.

In the announcement, he mentions that he will be working on a more modern
version of the proof, which was created during discussions with Taylor and
involves less analysis than the original Taylor-Wiles proof.
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A non-exhaustive list of ingredients that need to be
formalized

All known proofs involve a vast amount of technical machinery (358 years
of mathematical knowledge).

Note also that all known proofs of FLT use classical mathematics (axiom
of choice and the law of excluded middle).

Elliptic curves (Angdinata, Xu, . . . ), modular forms (Birkbeck, . . . ),
finite flat group schemes, automorphic representations, p-adic Galois
representations (Monnet, . . . ), Hecke algebras, universal deformation
rings, Galois cohomology (Livingston, . . . ), local and global class field
theory (De Frutos–Fernández, . . . ), harmonic analysis, algebraic
geometry, arithmetic geometry, nonabelian Fourier theory.

Then we prove some very deep theorems about some of these objects,
using the rest of these objects.

And then we get a complete formalization of Fermat’s Last Theorem.
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The proof of FLT

Theorem (Fermat’s Last Theorem, [5])
Let n > 2. If positive integers a, b, and c satisfy the equation

an + bn = cn (1)

then at least one of a, b, and c must be 0.

A flow diagram ([5], p. 1) of the proof can be drawn as follows:

(a solution of (1)) =⇒
(an elliptic curve) =⇒

(a Galois representation) =⇒
(a modular form) =⇒

(contradiction)

(2)

The meaning of diagram (2) goes as follows. We assume there exists a
nontrivial solution to the equation (1) and define an elliptic curve using such a
solution. We then show that such an elliptic curve is associated to a modular
form with certain properties. Finally, we derive a contradiction by showing that
such a modular form could not exist.
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Overview of the proof of FLT [1]

For an integer n > 2, assume the equation an + bn = cn admits a nontrivial
integer solution.

Then we obtain an elliptic curve using such a solution using the work of
Hellegouarch (from the late 1960s) and others.

The curve consists of all points in the plane whose coordinates (x , y) satisfy
the relation

y 2 = x(x − an)(x + bn). (3)

The next step is to construct an irreducible Galois representation associated to
this elliptic curve.

Galois representations can simplify the study of elliptic curves by transforming
the field of study into a simpler one, such as linear algebra.

For this, we rely on a deep theorem by Mazur from the 1970s that involves
advanced algebraic geometry.
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Overview of the proof of FLT (continued)

Next step : from the Galois representation, we associate a “modular form” to it
using some very profound theorems of Langlands and others on analysis.

Modular forms can be viewed as functions from the complex upper half plane
H = {z ∈ C | Im (z) > 0} to C. A definition of such a function is the following:

Definition (Modular form)
A modular form of level N is a formal power series of the form

f =
∞∑
m=1

amx
m ∈ C[[x ]] (4)

satisfying certain properties.

Given the associated modular form, we now apply deep results of Wiles and
others and get a contradiction.
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Xena project [2], February 9, 2020
The formalization of the statement of Deligne’s theorem is the 6th of the ten
challenges proposed by Buzzard for testing the limits of the current proof
assistants - Lean, Coq, Isabelle/HOL, Mizar and all the others - by identifying
which prover can do all ten.

Freek Wiedijk keeps track of 100 theorems to be formalised — but 95 of them
are done now and FLT is just silly. We need new challenges. Here are ten off
the top of my head:

1. Formalise the statement of the Riemann Hypothesis.
2. Formalise the statement of the Poincare conjecture.
3. Formalise the definition of an algebraic stack.
4. Formalise the definition of a reductive algebraic group.
5. Formalise the definition of an adic space.
6. State Deligne’s theorem attaching a Galois representation to a weight k

eigenform.
7. Do the sheaf-gluing exercise in Hartshorne (chapter 2, exercise 1.22).
8. Prove sphere eversion.
9. Do exercise 1.1.i in Elements of infinity-category theory by Riehl and

Verity (note that infinity categories are used in section 5 of Scholze’s new
paper with Cesnavicius so they’re probably here to stay).

10. Define singular cohomology of a topological space.

The challenge is accompanied with the comment “6 is I think a million miles
away from anything in any theorem prover”.
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Deligne’s theorem

The formalization of Deligne’s theorem requires the combination of results from
several mathematical areas, including analysis, algebra, number theory,
topology and representation theory, and fits in within the long-term goal of
formalizing a proof of Fermat’s Last Theorem.

Theorem (Deligne [3])
If f is a weight k modular eigenform of level N and character χ, and if p is a
prime then there is an associated 2-dimensional Galois representation ρf
unramified outside Np such that if q not dividing Np is a prime, then the
characteristic polynomial of ρf (Frob) is X

2 − aqX + qk−1χ(q).

The case k = 2, historically proven earlier by Eichler and Shimura, constitutes a
necessary component in the Wiles/Taylor–Wiles proof.

Formalizing the statement of Deligne’s theorem involves the formalization of
the definitions that occur in this statement and play a central role in all the
proofs of Fermat’s Last theorem.
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Formal proof sketch

Compared to the aforementioned work, our approach is top-down; The idea is
to create a roadmap for a full formalization.

A Formal Proof Sketch is a formalization in which details of proofs have been
omitted, but still has a notion of correctness.

We will introduce the higher-level objects used, and we will state, but not
prove, the theorems of Wiles and Taylor/Wiles and others about these objects.

We want to reduce the proof to several highly nontrivial statements about
these 20th century mathematical objects.
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The Lean theorem prover [4]

Lean 4 is a programming language together with a proof assistant.

Lean’s formal system is a dependent type theory based on the calculus of
inductive constructions.

Rocq and Lean are based on essentially the same type-theoretic foundations.

Each element has a unique type, which is represented as e : t. For example,
the natural number 0 has type N, and the rational 0 has type Q. Types also
have types, such as N : Type.

The hierarchy consists of an impredicative universe Prop at the bottom of a
noncumulative chain Prop : Type : Type 1 : Type 2 : ...;.

Propositions correspond to elements of Prop, while a (verified) proof of the
proposition P : Prop corresponds to an element p : P.
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Lean commands I

The def and its variant abbrev commands are used to define new objects.

The general form of a definition is def foo : α := bar, where α is the type
of the object being defined and bar is the term that foo should denote.

It is often a good idea to write the type explicitly to clarify the intention and
avoid errors. For example,

def Double (x : N) : N := x + x

The name Double is defined as a function that takes an input parameter x of

type N, where the output is x + x of type N.
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Lean commands II

Similarly, the theorem command introduces a new theorem:
theorem t : A := ... with the only difference being that A has type Prop
i.e. A is a proposition.

For example,

theorem t (P Q : Prop) : P → Q → P :=
fun hp : P => fun hq : Q => hp

Thus, proving the theorem P → Q → P is the same as defining an element of
the associated type.

Lastly, the sorry identifier is a command that produces a proof of anything or

provides an object of any data type.



Lean commands II

Similarly, the theorem command introduces a new theorem:
theorem t : A := ... with the only difference being that A has type Prop
i.e. A is a proposition.

For example,

theorem t (P Q : Prop) : P → Q → P :=
fun hp : P => fun hq : Q => hp

Thus, proving the theorem P → Q → P is the same as defining an element of
the associated type.

Lastly, the sorry identifier is a command that produces a proof of anything or

provides an object of any data type.



Mathlib

Lean has a comprehensive mathematics library called mathlib that covers the
foundations of analysis, geometry, algebra, topology, and number theory.

The library is a community-driven effort and is actively maintained by many
research mathematicians who are familiar with the material.

According to the mathlib philosophy, the formalized work has to be written in
the maximal generality and not in an ad hoc way, to ensure that it can be used
in as many different applications as possible.
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Large-scale formalizations

Large scale formalizations are difficult to achieve.

The complete formalization of FLT will take a very long time and it will require
the sustained efforts of a large number of specialists in many diverse fields.

Furthermore, building upon a large library is the only way to ensure continuous
maintenance of the code.

New material is initially not ready for use outside of the project as it may
undergo significant modifications to suit the needs of the project.

Building on top of a library requires developing it in parallel, and, this is only
possible when the code is sufficiently mature and written in the maximal
generality.
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More on FPS

The first step towards this is to write the proof from the top down, using
sorry to fill in sub-proofs.

Once a proof sketch has been obtained, the proof will be built incrementally by
filling in the sub-proofs.

The end product will reveal all the required material and deficiencies of the
library that need to be formalized. This will also keep the maintenance of the
code to a bare minimum.

It will drive the development of mathlib by contributing pieces of work as they
are finished; continuous maintenance, extensibility and usability of the code.

Last but not least, having a “blueprint” of the proof will enable the division
and distribution of the work.

This approach will also help identify any potential issues or challenges that may
arise.
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Levels of formalization

There is a lattice of seven possibilities of which the first two are full
formalizations, and the latter five are only partial approximations.

1. We prove the theorem as well as “mathlib versions”.

2. The theorem is fully formalized with all definitions involved and including
all proofs.

3. Only the statement is fully formalized.

4. a The statement is fully formalized with all definitions involved but
Props may be omitted everywhere.

b The statement is fully formalized, but with definitions that are
“sorry-free”, but are sometimes unusual, “hacky”, to work around
difficult proof obligations.

c A combination of 4a and 4b.

5. The statement is fully formalized and both definitions and Props may be
“sorried”.
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Lattice of partial formalization

(1)

(2)

(3)

(4c)

(5)

(4a) (4b)

Figure: The lattice of notions of partial formalization.

The interpretation of (4a), (4b) and (4c) is that we are not allowed to say def
foo : a := sorry if a : Type but we are allowed to say theorem t : P :=
sorry if P : Prop.



Formalizing FLT

Currently, while it is very challenging to achieve a complete formalization of
many of the high-powered theorems used in the proof of Fermat’s Last
Theorem, even formalizing just the statements of these theorems without
omitting any proofs may require substantial effort and time, potentially
spanning decades.

Thus, we are going to be in situations where (1), (2) and (3) are not feasible,
leaving us with the variants (4a), (4b), and (4c) as our only options.
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Formal sketch of Deligne’s theorem

Thus, the situation is similar. The mathematics involved in the theorem of
Deligne will take a long time to fully formalize.

Our approach will be to work on level (4c) of partial formalization. This means
that we are allowed to sorry Props but not definitions - the definitions can be
stated in a general, ad hoc, and/or unorthodox way.

As a result, we have defined all mathematical objects in the statement of
Deligne’s theorem.
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Eigenforms for Deligne’s theorem

The classical theory of modular forms has been integrated in mathlib.

Among the most important modular forms are what we call eigenforms.

The following code snippet shows how this definition looks in Lean:

def IsWeakEigenform {N : N} {k : N}
(f : ModularForm (Gamma1 N) k)
(χ : DirChar C N) : Prop :=

f ̸= 0 ∧ ∀ {q : N} (h : Nat.Prime q) (hqN : ¬q | N), ∃ a : C,
∀ z : UpperHalfPlane, heckeOperator f h χ hqN z = a * f z
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Galois representations for Deligne’s theorem

A representation makes an abstract algebraic object more concrete by
describing its elements by matrices and their algebraic operations (for example,
matrix addition, matrix multiplication).

For Deligne’s theorem we need a two-dimensional Galois representation over a
topological ring k which is a continuous group homomorphism

ρ : GQ → GL2(k).

def GaloisRep := ContinuousMonoidHom
(AlgebraicClosure Q ≃a[Q] AlgebraicClosure Q) (GL (Fin 2) k)
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The Frobenius element in Deligne’s theorem

The Frobenius element Frob is a key element of the Galois group GQ with some
special properties.

The formalization of this special element in Lean looks like this:

noncomputable def Frob (K L : Type _) [Field K] [Field L]
[NumberField K] [Algebra K L] [IsGalois K L]
(v : ValuationSubring L) (hv : v ̸= ⊤) :

decompositionSubgroup K v := by
letI := fintypeOfNeBot K (v.comap (algebraMap K L)) (
ComapNeTopOfAlgebraic K v hv Normal.isAlgebraic’)

have := decompositionSubgroup.surjective K v
let f : LocalRing.ResidueField v ≃a[LocalRing.ResidueField (v.comap (

algebraMap K L))]
LocalRing.ResidueField v :=
frobenius.equiv
(algebraComap_algebraic K v)

specialize this f
exact this.choose
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Formalizing Deligne’s theorem
The following Lean code states Deligne’s theorem with comments.

-- If f is a weight k modular eigenform of level N and character χ, and if p is a
prime

theorem Deligne {N : N} {k : N}
{f : ModularForm (Gamma1 N) k}
(χ : DirChar (AlgebraicClosure Q) N)
(hf : IsWeakEigenform f (DirCharComplex χ)) :

-- then there is an associated 2-dimensional Galois representation ρ
∃ (ρ : GaloisRep (AlgebraicClosure Q_[p])),
-- unramified outside Np such that if q not dividing Np, q is a prime
∀ (v : ValuationSubring (AlgebraicClosure Q))

(hv : v ̸= ⊤)
(hqpN : ¬ q v hv | p * N),
(IsUnramified ρ v) ∧

let a :=
C ((algClosRatToPAdic p)

(AlgEigenvalue (q.isPrime hv) hf
(div N v hv hqpN)))

let χq :=
(Units.coeHom (AlgebraicClosure Q_[p])).comp
(DirCharAlgClosRat χ)
(ZMod.Unit (q.isPrime hv) hqpN)

-- Then the characteristic polynomial of ρ(Frob)
Matrix.charpoly (Matrix.of
(ρ.toMonoidHom (Frob Q (AlgebraicClosure Q) v hv))) =
-- is X^2 - a_qX + q^{k-1} χ(q).
X ^ 2 - (a * X) + ((q v hv) ^ (k - 1) :
(AlgebraicClosure Q_[p])[X]) * (C χq) := sorry



Conclusion and future work

We stated Deligne’s theorem attaching a Galois representation to a weight k
eigenform by implementing the (4c) level of formalization.

We demonstrated a procedure of constructing a blueprint and achieving a
partial formalization by stating (but not proving) Deligne’s theorem.

One can now build upon this work to achieve a complete formalization of
Deligne’s theorem.

Our future work involves applying the same process to obtain partial
formalizations of the main theorems in the Wiles and Taylor–Wiles proof of
Fermat’s Last Theorem.
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