Universität Bonn

Trimester Program: "Evolution of Interfaces"


January 3 - April 26, 2019

Organizers: László Székelyhidi, Georg Weiss

Description: Interfaces arising as phase boundaries are ubiquitous in nature and are a rich source of mathematical problems. A major challenge is presented by the formation of singularities and in this respect phase-field approximations have played a key role in identifying selection principles and obtaining a well-defined evolution past singularities in the sharp interface limit. The purpose of the trimester program is to explore such problems, building on recent progress in higher co-dimensional minimal surface theory, the analysis of singularities in free boundary problems and on the discovery of h-principle phenomena induced by fluid instabilities.

Associated Events: 

  • Winter School on Interfaces in Geometry and Fluids (January 7-11)
  • Workshop on Geometric Measure Theory and Free Boundary Problems (February 11-15)
  • Workshop on Interfaces and Instabilities in Fluid Dynamics (March 18-21)

 


Publications

No.
Author(s)
Title
Preprint
Publication
2019a01 Blesgen, T.; Amendola, A.; Fraternali, F. On a modified Becker-Doering model for two-phase materials 1904.00452 Continuum Mech. Thermodyn. 32 (2020), 901–912, https://doi.org/10.1007/s00161-019-00774-2
2019a02 Bozorgnia, F.; Lewintan, P. Decay estimate for the solution of the evolutionary damped p-Laplace equation 1905.03597 Electron. J. Differential Equations 73 (2021), 1-9, https://doi.org/10.58997/ejde.2021.73
2019a03 Blesgen, T.; Amendola, A.; Fraternali, F. On a modified Becker–Döring model for two-phase materials 1904.00452

Continuum Mech. Thermodyn. 32 (2020), 901–912, https://doi.org/10.1007/s00161-019-00774-2
2019a04 Blesgen, T.; Amendola, A. Mathematical analysis of a solution method for finite-strain holonomic plasticity of Cosserat materials   Meccanica 55 (2020), 621–636, https://doi.org/10.1007/s11012-019-01006-2
2019a05 Cao, W.; Székelyhidi, L. Global Nash-Kuiper theorem for compact manifolds 1906.08608 J. Differential Geom. 122(1) (2022), 35-68, https://doi.org/10.4310/jdg/1668186787
2019a06 Faraco, D.l; Lindberg, S.; Székelyhidi, L. Bounded solutions of ideal MHD with compact support in space-time 1909.08678 Arch Rational Mech Anal 239 (2021), 51–93, https://doi.org/10.1007/s00205-020-01570-y
2019a07 Noisette, F.; Székelyhidi, L. Mixing solutions for the Muskat problem with variable speed 2005.08814 J. Evol. Equ. 21 (2021), 3289–3312, https://doi.org/10.1007/s00028-020-00655-1
2019a08 Mengual, F.; Székelyhidi, L. Dissipative Euler flows for vortex sheet initial data without distinguished sign 2005.08333 Communications on Pure and Applied Mathematics 76(1) (2022), https://doi.org/10.1002/cpa.22038
2019a09 Fischer, J.; Hensel, S.; Laux, T.; Simon, T. The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions 2003.05478 to appear in Journal of the European Mathematical Society
2019a10 Eberle, S.; Shahgholian, H.; Weiss, G. On global solutions of the obstacle problem 2005.04915
 
Duke Math. J. 172(11) (2023), 2149-2193, https://doi.org/10.1215/00127094-2022-0078
2019a11 Eberle, S.; Weiss, G. Characterizing compact coincidence sets in the obstacle problem - a short proof 2005.10490 St. Petersburg Math. J. 32 (2021), 705-711, https://doi.org/10.1090/spmj/1665
2019a12 Modena, S. On some recent results concerning non-uniqueness for the transport equation 1903.04962 Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the 17th international conference on Hyperbolic Problems, AIMS 10 (2020), 562-568

2019a13 Gkikas, K.; Nguyen, P.-T. Green kernel and Martin kernel of Schrödinger operators with singular potential and application to the B.V.P. for linear elliptic equations 2002.10754  
2019a14 Fotouhi, M.; Shahgholian, H.; Weiss, G. A free boundary problem for an elliptic system Preprint Journal of Differential Equations 284 (2021), 126-155,
https://doi.org/10.1016/j.jde.2021.02.050
2019a15 Krupa, S.G.; Székelyhidi Jr, L. Nonexistence of T4 configurations for hyperbolic systems and the Liu entropy condition 2211.14239

Participants

Name
Affiliation
Giovanni Alberti Università di Pisa
Gohar Aleksanyan Universität Duisburg-Essen
Diego Alonso-Orán Universität Bonn
John Andersson Kungliga Tekniska Högskolan
Aymeric Baradat École Polytechnique
Claude Bardos Laboratoire JLL. Université Denis Diderot,
Michal Bathory Charles University
Thomas Blesgen TH Bingen
Farid Bozorgnia Tecnico Lisboa
Stella Brassesco Instituto Venezolano de Investigaciones Ceintificas
Yann Brenier Ecole Normale Superieure
Jan Burczak Universität Leipzig
Wentao Cao Universität Leipzig
Victor Cañulef ICMAT (Instituto de Ciencias Matemáticas)
Sagun Chanillo Rutgers University
Diego Cordoba Instituto de Ciencias Matemáticas (ICMAT)
Helge Dietert Institut de Mathématiques de Jussieu - Paris Rive Gauche
Simon Eberle Basque Center for Applied Mathematics (BCAM)
Daniel Faraco Universidad Autonoma de Madrid
Julian Fischer IST Austria
Morteza Fotouhi Sharif University of Technology
Björn Gebhard Universität Leipzig
Sebastian Hensel Universität Bonn
Matthias Hieber TU Darmstadt
Jonas Hirsch Universität Leipzig
Yash Jhaveri Institute for Advanced Study
Illia Karabash the University of Bonn, Institute for Applied mathematics
Lami Kim The Research Institute For Natural Sciences(Hanyang University)
József Kolumbán Universität Leipzig
Aleksis Koski University of Jyväskylä
Sam Krupa The University of Texas at Austin
Peter Lewintan University of Duisburg-Essen
Sauli Lindberg University of Helsinki
Erik Lindgren Uppsala University
Tomáš Los Charles University
Stephan Luckhaus Universität Leipzig
Josef Malek Charles University
Michele Marini Scuola Internazionale Superiore di Studi Avanzati SISSA
Francisco Mengual Bretón Universidad Autónoma de Madrid
Andreas Minne KTH Royal Institute of Technology
Stefano Modena Universität Darmstadt
Phuoc-Tai Nguyen Masaryk University
Florent Noisette École normale supérieure ULM
Tania Pernas Castaño Instituto de Ciencias Matemáticas, Madrid
Edgard Pimentel Pontifical Catholic University of Rio de Janeiro
Jyotshana Prajapat University of Mumbai
Maximilian Rauchecker University of Regensburg
Sandra Ried Universität Leipzig
Daniel Schliewe Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig
Henrik Shahgholian KTH Royal Institute of Technology
Wenhui Shi Monash University
Mariana Smit Vega Garcia Western Washington University
Nicola Soave Politecnico di Milano
Angela Stevens University of Münster
Athanasios Stylianou Universität Kassel
László Székelyhidi Universität Leipzig
Keisuke Takasao Kyoto University
Leonardo Tolomeo University of Edinburgh
Jose Miguel Urbano University of Coimbra
Stephen Watson University of Glasgow
Georg Weiss Universität Duisburg-Essen
Konstantinos Zemas University of Münster
Guanghui Zhang Huazhong University of Science and Technology
Poster TP_2019_01.jpg
© HIM

Wird geladen