Universität Bonn

Trimester Program: "Analysis and Numerics for High Dimensional Problems"


May - August 2011

Organizers: Michael Griebel, Wolfgang Hackbusch, Markus Hegland, Christoph Schwab

Description: Partial differential equations related to high-dimensional parameter spaces are a major challenge in science, engineering and finance. Here, the well-known curse of high dimension prevents an efficient treatment by standard numerical discretization for most of the problems. The resulting enormous computational challenges cannot be met merely by larger computers, but require fundamentally new mathematical and algorithmic ideas. These can only be envisioned by an interdisciplinary attempt which involves modeling, analysis, stochastics and numerics. To this end, we brought together leading experts from these areas.

Associated Events: 

  • Workshop 1: Sparse Grids and Applications
  • Workshop 2: Manifold Learning
  • Workshop 3: Theoretical Aspects of High-Dimensional Problems and Information-Based Complexity
  • Workshop 4: Tensor Approximation in High Dimension
  • Workshop 5: High-Dimensional Aspects of Stochastic PDEs
  • Summer School on H-matrices
  • Summer School on Hierarchical Tensor Approximation

Publications

No. Author(s) Title Preprint Publication
2011b01 Chkifa, A.; Cohen, A.; DeVore, R.; Schwab, C. Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs ESAIM Math. Model. Numer. Anal. 47(1) (2013), 253–280.
https://doi.org/10.1051/m2an/2012027
2011b02 Grella, K.; Schwab, C. Sparse discrete ordinates method in radiative transfer Comput. Methods Appl. Math.11(3) (2011), 305–326.
https://doi.org/10.2478/cmam-2011-0017
2011b03 Griebel, M.; Oswald, P. Greedy and randomized versions of the multiplicative Schwarz method Linear Algebra Appl. 437(7) (2012), 1596–1610.
https://doi.org/10.1016/j.laa.2012.04.052
2011b04 Oseledets, I. DMRG approach to fast linear algebra in the TT-format Comput. Methods Appl. Math. 11(3) (2011), 382–393.
https://doi.org/10.2478/cmam-2011-0021
2011b05 Wasilkowski, G. W. Liberating the dimension for L2-approximation J. Complexity. 28(3) (2012), 304–319.
https://doi.org/10.1016/j.jco.2011.12.002
2011b06 Chernov, A.; Schwab, C. First order k-th moment finite element analysis of nonlinear operator equations with stochastic data Math. Comp. 82(284) (2013), 1859–1888.
https://doi.org/10.1090/S0025-5718-2013-02692-0
2011b07 Oseledets, I.; Tyrtyshnikov, E.; Zamarashkin, N. Tensor-train ranks for matrices and their inverses Comput. Methods Appl. Math. 11(3) (2011), 394–403.
https://doi.org/10.2478/cmam-2011-0022
2011b08 Kuo, F. Y.; Schwab, C.; Sloan, I. H. Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients link SIAM J. Numer. Anal. 50(6) (2012), 3351–3374.
https://doi.org/10.1137/110845537
2011b09 Dahlke, S.; Oswald, P.; Raasch, T. A note on quarkonial systems and multilevel partition of unity methods pdf Math. Nachr. 286(5-6) (2013), 600–613.
https://doi.org/10.1002/mana.201100246
2011b10 Chernov, A.; Schwab, C. Sparse space-time Galerkin BEM for the nonstationary heat equation pdf (revised version) ZAMM Z. Angew. Math. Mech. 93(6-7) (2013), 403–413.
https://doi.org/10.1002/zamm.201100192
2011b11 Hegland, M.; Wasilkowski, G. W. On tractability of approximation in special function spaces 1201.4886 J. Complexity. 29(1) (2013), 76–91.
https://doi.org/10.1016/j.jco.2012.10.002
2011b12 Dung, D.; Ullrich, T. n-Widths and ε-dimensions for high-dimensional sparse approximations pdf  
2011b13 Kressner, D.; Tobler, C. Preconditioned low-rank methods for high-dimensional elliptic PDE eigenvalue problems pdf Comput. Methods Appl. Math. 11(3) (2011), 363–381.
https://doi.org/10.2478/cmam-2011-0020
2011b14 Schilling, R. L.; Partzsch, L. Brownian motion: An introduction to stochastic processes   De Gruyter Grad. De Gruyter, Berlin, 2014. xvi+408 pp.
MR3234570
2011b15 Schilling, R. L.; Wang, J. Some theorems on Feller processes: transience, local times and ultracontractivity 1108.3246 Trans. Amer. Math. Soc. 365(6) (2013), 3255–3286.
https://doi.org/10.1090/S0002-9947-2012-05738-2
2011b16 Khoromskaia, V.; Khoromskij, B. N.; Schneider, R. QTT representation of the Hartree and exchange operators in electronic structure calculations link Comput. Methods Appl. Math. 11(3) (2011), 327–341.
https://doi.org/10.2478/cmam-2011-0018
2011b17 Lifshits, M. A.; Papageorgiou, A.; Woźniakowski, H. Average case tractability of non-homogeneous tensor product problems 1112.4251 J. Complexity. 28(5-6) (2012), 539–561.
https://doi.org/10.1016/j.jco.2012.05.003
2011b18 Lifshits, M. A.; Papageorgiou, A.; Woźniakowski, H. Tractability of multi-parametric Euler and Wiener integrated processes 1112.4248 Probab. Math. Statist. 32(1) (2012), 131–165.
https://www.math.uni.wroc.pl/~pms/publications.php?nr=32.1
2011b19 Schwab, C.; Süli, E. Adaptive Galerkin approximation algorithms for Kolmogorov equations in infinite dimensions pdf Stoch. Partial Differ. Equ. Anal. Comput. 1(1) (2013), 204–239.
https://doi.org/10.1007/s40072-013-0002-6
2011b20 Kazeev, V. A.; Khoromskij, B. N.; Tyrtyshnikov, E. E. Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity link SIAM J. Sci. Comput. 35(3) (2013), A1511–A1536.
https://doi.org/10.1137/110844830
2011b21 Nistor, V.; Schwab, C. High-order Galerkin approximations for parametric second-order elliptic partial differential equations link Math. Models Methods Appl. Sci. 23(9) (2013), 1729–1760.
https://doi.org/10.1142/S0218202513500218
2011b22 Dick, J.; Nuyens, D.; Pillichshammer, F. Lattice rules for nonperiodic smooth integrands 1211.3799 Numer. Math. 126(2) (2014), 259–291.
https://doi.org/10.1007/s00211-013-0566-0
2011b23 Hegland, M.; Leopardi, P. Sparse grid quadrature on products of spheres 1202.5710 Numer. Algorithms. 70(3) (2015), 485–517.
https://doi.org/10.1007/s11075-015-9958-9
2011b24 Dick, J.; Gnewuch, M. Infinite-dimensional integration in weighted Hilbert spaces: anchored decompositions, optimal deterministic algorithms, and higher-order convergence 1210.4223 Found. Comput. Math. 14(5) (2014), 1027–1077.
https://doi.org/10.1007/s10208-014-9198-8

Participants

Name
Affiliation
Alon Arad Australian National University
Dung Dinh Vietnam National University
Simon Foucart Drexel University
Jochen Garcke TU Berlin
Michael Griebel Universität Bonn
Wolfgang Hackbusch Max-Planck-Institut für Mathematik Leipzig
Markus Hegland Australian National University
Viet Ha Hoang Nanyang Technological University
John Jakeman Australian National University
Vladimir Kazeev Russian Academy of Sciences
Venera Khoromskaia Max-Planck-Institut für Mathematik in den Naturwissenschaften
Boris Khoromskij Max-Planck-Institut für Mathematik in den Naturwissenschaften
Daniel Kressner ETH Zürich
Frances Kuo University of New South Wales
Elizabeth Lam University of Toronto
Mikhail Lifshits St. Petersburg State University
Per Lötstedt Uppsala University
Martin Mohlenkamp Ohio State University
Ekaterina Muravleva Max Planck Institute for Mathematics in the Sciences
James Nichols University of New South Wales (UNSW)
Victor Nistor Penn State University
Erich Novak Universität Jena
Erich Novak Universität Jena
Dirk Nuyens Katholieke Universiteit Leuven
Ivan Oseledets Russian Academy of Sciences
Peter Oswald Jacobs University Bremen
Vladimir Pestov University of Ottawa
Daniel Rudolf Friedrich-Schiller-Universität Jena
René Leander Schilling TU Dresden
Reinhold Schneider TU Berlin
Christoph Schwab ETH Zürich
Ian H. Sloan University of New South Wales
Vikram Sunkara Australian National University
Endre Süli Oxford University
Evgeny Tyrtyshnikov Russian Academy of Sciences
Mario Ullrich Friedrich-Schiller-Universität Jena
Grzegorz (Greg) W. Wasilkowski University of Kentucky
Holger Wendland University of Oxford
Henryk Wozniakowski Columbia University

This list does not include people who only participated in the workshops or summer schools.

Poster TP_2011_05.jpg
© HIM

Wird geladen