Universität Bonn

Trimester Program: "Rigidity"


September - December 2009

Organizers: Wolfgang Lück and Nicolas Monod

Description: There is a long list of rigidity phenomena whose discovery was a striking surprise and triggered a host of fruitful and lasting activities in mathematics. In many instances, these very discoveries led to outstanding open problems currently subject of intense activity.

The goal of this Trimester Program was to study and link rigidity phenomena in different areas of pure mathematics. The main focus was on:

  • Mostow-Margulis-Zimmer Rigidity
  • Rigidity in Topology
  • von Neumann Rigidity

The Trimester Program brought together experts from, used methods from and contributed substantially to the following fields:

  • Algebraic K-and L-theory
  • Surgery theory
  • L2-methods
  • Finite von Neumann algebras and measure theory
  • Geometric group theory
  • Cohomological algebra
  • Bounded cohomology
  • Asymptotic methods on semi-simple groups
  • Multiplicative ergodic theory
  • Functional-analytic aspects of group representations

Associated Events: Workshop: Rigidity in cohomology, K-theory, geometry and ergodic theory


Publications

No. Author(s) Title Preprint Publication
2009c01 Bartels, A.; Lück, W. Geodesic flow for CAT(0)-groups 1003.4630 Geom. Topol. 16(3) (2012), 1345–1391.
https://doi.org/10.2140/gt.2012.16.1345
2009c02 Bartels, A.; Lück, W.; Weinberger, S. On hyperbolic groups with spheres as boundary 0911.3725 J. Differential Geom. 86(1) (2010), 1–16.
http://dx.doi.org/10.4310/jdg/1299766682
2009c03 Bestvina, M.; Bromberg, K.; Fujiwara, K. Constructing group actions on quasi-trees and applications to mapping class groups 1006.1939 Publ. Math. Inst. Hautes Études Sci. 122 (2015), 1–64.
https://doi.org/10.1007/s10240-014-0067-4
2009c04 Bonk, M.; Merenkov, S. Quasisymmetric rigidity of square Sierpiński carpets 1102.3224 Ann. of Math. 177(2) (2013), 591–643.
https://doi.org/10.4007/annals.2013.177.2.5
2009c05 Bridson, M. R.; Vogtmann, K. Abelian covers of graphs and maps between outer automorphism groups of free groups 1007.2598 Math. Ann. 353(4) (2012), 1069–1102.
https://doi.org/10.1007/s00208-011-0710-z
2009c06 Burger, M.; Iozzi, A.; Wienhard, A. Higher Teichmüller spaces: from SL(2,ℝ) to other Lie groups 1004.2894 Handbook of Teichmüller theory. Vol. IV, 539–618. IRMA Lect. Math. Theor. Phys., 19
https://doi.org/10.4171/117-1/14
2009c07 Burger, M.; Ozawa, N.; Thom, A. On Ulam stability 1010.0565 Israel J. Math. 193(1) (2013), 109–129.
https://doi.org/10.1007/s11856-012-0050-z
2009c08 Caprace, P-E.; Przytycki, P. Twist-rigid Coxeter groups 0911.0354 Geom. Topol. 14(4) (2010), 2243–2275.
https://doi.org/10.2140/gt.2010.14.2243
2009c09 Cluckers, R.; Cornulier, Y.; Louvet, N.; Tessera, R.; Valette, A. The Howe-Moore property for real and p-adic groups 1003.1484 Math. Scand. 109(2) (2011), 201–224.
https://doi.org/10.7146/math.scand.a-15185
2009c10 Davis, J. F.; Lück, W. The topological K-theory of certain crystallographic groups 1004.2660 J. Noncommut. Geom. 7(2) (2013), 373–431.
https://doi.org/10.4171/JNCG/121
2009c11 Ghosh, A.; Gorodnik, A.; Nevo, A. Diophantine approximation and automorphic spectrum 1007.0593 Int. Math. Res. Not. IMRN. 2013(21) (2013), 5002–5058.
https://doi.org/10.1093/imrn/rns198
2009c12 Hensel, S.; Przytycki, P. The ending lamination space of the five-punctured sphere is the Nöbeling curve 0910.3554 J. Lond. Math. Soc. 84(1) (2011), 103–119.
https://doi.org/10.1112/jlms/jdr002
2009c13 Higes, J.; Peng, I. Assouad-Nagata dimension of connected Lie groups 0910.4569 Math. Z. 273(1-2) (2013), 283–302.
https://doi.org/10.1007/s00209-012-1004-1
2009c14 Kyed, D. A cohomological description of property (T) for quantum groups 1003.5181 J. Funct. Anal. 261(6) (2011), 1469–1493.
https://doi.org/10.1016/j.jfa.2011.05.010
2009c15 Linnell, P.; Lück, W.; Sauer, R. The limit of Fp-Betti numbers of a tower of finite covers with amenable fundamental groups 1003.0434 Proc. Amer. Math. Soc.139(2) (2011), 421–434.
https://doi.org/10.1090/S0002-9939-2010-10689-5
2009c16 Crowley, D.; Löh, C. Functorial seminorms on singular homology and (in)flexible manifolds 1103.4139 Algebr. Geom. Topol. 15(3) (2015), 1453–1499.
https://doi.org/10.2140/agt.2015.15.1453
2009c17 Ozawa, N. Quasi-homomorphism rigidity with non-commutative targets 0911.3975 J. Reine Angew. Math. 655 (2011), 89–104.
https://doi.org/10.1515/CRELLE.2011.034
2009c18 Pichot, M.; Schick, T.; Zuk, A. Closed manifolds with transcendental L2-Betti numbers 1005.1147 J. Lond. Math. Soc. 92(2) (2015), 371–392.
https://doi.org/10.1112/jlms/jdv026
2009c19 Przytycki, P.; Schultens, J. Contractibility of the Kakimizu complex and symmetric Seifert surfaces 1004.4168 Trans. Amer. Math. Soc. 364(3) (2012), 1489–1508.
https://doi.org/10.1090/S0002-9947-2011-05465-6
2009c20 Sasyk, R.; Törnquist, A. Turbulence and Araki-Woods factors 0912.1496 J. Funct. Anal. 259(9) (2010), 2238–2252.
https://doi.org/10.1016/j.jfa.2010.06.018
2009c21 Crowley, D.; Macko, T. The additivity of the ρ-invariant and periodicity in topological surgery 1002.1917 Algebr. Geom. Topol. 11(4) (2011), 1915–1959.
https://doi.org/10.2140/agt.2011.11.1915
2009c22 Wegner, C. The K-theoretic Farrell-Jones conjecture for CAT(0)-groups 1012.3349 Proc. Amer. Math. Soc. 140(3) (2012), 779–793.
https://doi.org/10.1090/S0002-9939-2011-11150-X
2009c23 Davis, J. F.; Quinn, F.; Reich, H. Algebraic K-theory over the infinite dihedral group: a controlled topology approach 1002.3702 J. Topol. 4(3) (2011), 505–528.
https://doi.org/10.1112/jtopol/jtr009
2009c24 Merenkov, S.; Wildrick, K. Quasisymmetric Koebe uniformization 1109.3441 Rev. Mat. Iberoam. 29(3) (2013), 859–909.
https://doi.org/10.4171/RMI/743
2009c25 Caprace, P-E.; Przytycki, P. Bipolar Coxeter groups 1002.3991 J. Algebra. 338 (2011), 35–55.
https://doi.org/10.1016/j.jalgebra.2011.05.007
2009c26 Bridson, M. R.; Grunewald, F.; Vogtmann, K. Actions of arithmetic groups on homology spheres and acyclic homology manifolds 1207.3069 Math. Z. 276(1-2) (2014), 387–395.
https://doi.org/10.1007/s00209-013-1205-2
2009c27 Bartels, A.; Lück, W.; Reich, H.; Rüping, H. K- and L-theory of group rings over GLn(Z) 1204.2418 Publ. Math. Inst. Hautes Études Sci. 119 (2014), 97–125.
https://doi.org/10.1007/s10240-013-0055-0
2009c28 Connolly, F.; Davis, J. F.; Khan, Q. Topological rigidity and H1-negative involutions on tori 1102.2660 Geom. Topol. 18(3) (2014), 1719–1768.
https://doi.org/10.2140/gt.2014.18.1719

Participants

Name
Affiliation
Juan Alonso Cornell University
Aurélien Alvarez SB-IMB-EGG Ecole Polytechnique Federale
Uri Bader Technion - Israel Institute of Technology
Owen Baker Cornell University
Arthur Bartels Universität Münster
Jason Behrstock CUNY
Abramo Bertucco University of Pisa
Dietmar Bisch Vanderbilt University
Markus Rudolf Burger ETH-Zentrum
Pierre-Emmanuel Caprace Université catholique de Louvain
Stanley Chang Wellesley College
Pralay Chatterjee C.I.T. campus
David Constantine University of Chicago
James F. Davis Indiana University
Tullia Dymarz Yale University
Inessa Epstein Caltech
Pascal Fabig Universität Münster
David Fisher Indiana University
Koji Fujiwara Tohoku University
Damien Gaboriau CNRS UMR 5669 - Ens de Lyon
Krishnendu Gongopadhyay Indian Statistical Institute
Alexander Gorodnik University of Bristol
Ralf Gramlich TU Darmstadt
Ian Hambleton McMaster University
Tobias Hartnick ETH Zürich
Greg Hjorth University of Melbourne
Adrian Ioana University of California, Los Angeles
Michael Joachim Universität Münster
Arati Bansilal Khairnar School of Mathematics
Qayum Khan University of Notre Dame
Inkang Kim Korea Institute for Advanced Study
Victor Kostyuk Cornell University
Linus Kramer Universität Münster
Philipp Kuehl Universität Münster
David Kyed Georg-August-Universität Göttingen
Peter Linnell Virginia Polytechnic Institute & State University
José Manuel Higes Lopez Universidad Computense de Madrid
Clara Löh Universität Münster
Wolfgang Lück Universität Bonn
Tibor Macko Universität Münster
Pierre-Adelin Mercier  
Sergiy Merenkov University of Illinois at Urbana-Champaign
Adam Mole Universität Münster
Nicolas Monod EPFL
Izhar Oppenheim Technion - Israel Institute of Technology
Narutaka Ozawa University of Tokyo
Cristina Pagliantini University of Pisa
Irine Peng Indiana University
T. Tam Nguyen Phan University of Chicago
Mikael Pichot University of Tokyo
Piotr Przytycki Polish Academy of Sciences
Andrew Ranicki University of Edinburgh
Holger Reich Heinrich-Heine-Universität
Henrik Rueping Universität Münster
Roman Sasyk Instituto Argentino de Matemáticas
Roman Sauer WWU Münster
Thomas Schick Universität Göttingen
Petra Schwer Universität Münster
Wolfgang Steimle Universität Münster
Tobias Strubel ETH Zürich
Katrin Tent Universität Münster
Andreas Thom Universität Leipzig
Asger Dag Törnquist Universität Wien
Alain Valette Université de Neuchatel
Karen Vogtmann Cornell University
Christian Wegner Universität Münster
Shmuel Weinberger University of Chicago
George Willis University of Newcastle
Kostyantyn Yusenko NASU
Andrzej Zuk Université Paris VII

This list does not include people who only participated in the workshop.

Poster TP_2009_09.jpg
© HIM

Wird geladen