Date: June 13 - 17, 2022
Venue: Lipschitz lecture hall, Mathematics Center, Endenicher Allee 60, 53115 Bonn
Organizer: Leon Bungert (Bonn), Franca Hoffmann (Bonn)
Description:
The current success story of data science calls for interpretable machine learning methods. For instance, in the context of sampling, graph-based learning or neural networks, PDE-based methods have proven to be both efficient and apt for mathematical analysis.
This workshop brings together experts and young researchers in these two vibrant fields and aims to create a stimulating environment for exchanging scientific ideas and establishing new collaborations.
Keynote Speakers:
Eldad Haber (University of British Columbia, Canada)
Gitta Kutyniok (Ludwig-Maximilians-Universität München, Germany)
Michael Unser (EPFL, France)
Speakers:
- Matthias J Ehrhardt (University of Bath, UK)
- Tamara Grossmann (University of Cambridge, UK)
- Bamdad Hosseini (University of Washington, Seattle, USA)
- Arnulf Jentzen (University of Muenster, Germany)
- Anna Korba (ENSAE Paris, France)
- Yury Korolev (University of Cambridge, UK)
- Lisa Maria Kreusser (University of Bath, UK)
- Carlo Marcati (Università degli Studi di Pavia , Italy)
- Nikolas Nüsken (University of Potsdam, Germany)
- Josiah Park (Texas A&M University, USA)
- Phillipp Petersen (Universty of Vienna, Austria)
- Clarice Poon (Universty of Bath, UK)
- Tim Roith (Friedrich-Alexander Universität Erlangen-Nürnberg, Germany)
- Dejan Slepcev (Carnegie Mellon University, Pittsburgh, USA)
- Matthew Thorpe (University of Manchester, UK)
- Nicolas Garcia Trillos (University of Wisconsin, Madison, USA)
- Urbain Vaes (Inria Paris. France)
- Harini Veeraraghavan (Memorial Sloan Kettering Cancer Center, USA)
- Stephan Wojtowytsch (Texas A&M University, College Station, USA)
- Yunan Yang (ETH Zürich, Switzerland)