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Abstract

We give a set-theoretic presentation of models of constructive set the-
ory. The models are mostly Heyting-valued and Kripke models, and con-
structions that combine both of those ideas. The focus is on the kinds of
constructions that come up in practice when developing models for par-
ticular independence results, such as full models, settling, permutation
models, and the use of classical generics. We try to convey some of the
intuition behind these constructions, such as topological models as forc-
ing a new, generic point, and Kripke models as allowing a change in the
underlying universe. The discussion of inner models includes not only
permutation sub-models but also L, its basics, and examples of coding
constructions from V into L.
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1 Introduction

A mathematician who is classically trained, as most are, could well wonder,
when confronted with constructivism, what sense it could make. How could
Excluded Middle possibly fail, as well as other classical validities? One can give
philosophical motivations, say about increasing knowledge over time or the cen-
trality of constructions, or proof-theoretic demonstrations of the underivability
of these principles, perhaps by cut-elimination leading to normal form theorems
coupled with the observation that some such principle has no normal form proof.
Maybe someone could be convinced to accept some anti-classical principle, some
principle contradicting classical logic and set theory, such as Church’s Thesis
or a Brouwerian continuity axiom. Ultimately, those approaches are likely to
fail. Most mathematicians will remain unmoved by philosophical arguments, es-
pecially regarding their mathematics; proof-theoretic non-derivability is rather
formal, and would leave many cold as mere symbol manipulation; anyone won-
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dering how classical logic could fail is unlikely to embrace a principle violating
it.

I got a sense of the coherence of anti-classical principles only via model
theory. A model falsifying a classical principle was good; one satisfying an
anti-classical principle was even better; best of all was a theorem that a model
satisfied a principle iff the model was of such-and-such a form. For instance,
consider the ultimate principle at play here, Excluded Middle, in its proposi-
tional form: p ∨ ¬p. In the two-node Kripke model, with nodes ⊥ and >, with
p true only at >, ⊥ will not satisfy p ∨ ¬p. This seemed like an intuitive ex-
ample of how classical logic could fail. Its limitation was that classical logic
was not false, because the top node >, with no extension, must satisfy classi-
cal logic. Considering that ¬¬(p ∨ ¬p) is constructively provable, the best we
can hope for by way of satisfying the negation of Excluded Middle would be
to model ¬∀p(p ∨ ¬p). That could be done by a kind of iteration of the first
model: a Kripke model in which the nodes are indexed by the natural numbers,
and at every node there is a proposition which becomes true only at the next
node. Indeed, any Kripke model validating ¬∀p(p ∨ ¬p) would have to embed
the model described above: there can be no terminal nodes, since they would
satisfy classical logic, and every node would have to have an extension at which
some proposition p was not true, yet became true at some later extension.

The motivation of this article is to present the kinds of model constructions
that are already known, and what they are typically useful for. While the con-
tent will always remain about models of constructive theories, in which classical
logic fails, it turns out that many can be viewed as variants of well-known clas-
sical constructions. In particular, many of the constructions of current-day set
theory are forcing extensions of V , and inner models of V , and elementary em-
beddings which can be viewed as going to simultaneously an extension and an
inner model of V . Hence the focus here will be on models in which V embeds,
and extensions and inner models thereof.

In practice, there are three known basic techniques for building constructive
models: Kripke models, Heyting (or Heyting-valued) models, and realizability.
In a realizability model, though, there is no good embedding of V : there is
no function ·̂ such that x̂ has the same properties that x does. So here we
restrict attention to the former two models and their variants. To be sure, one
can easily enough build Kripke and Heyting models which do not embed V ,
depending upon just what one means by those names; the justification for this
choice to study them is that there are standard constructions of Kripke and
Heyting models which are usually what one wants, and they naturally embed
V . We consider Kripke and Heyting-valued models as two separate techniques,
even though the partial order which is an essential part of a Kripke model is a
topological space (and hence a Heyting algebra), because in practice there are
things you do with Kripke models that you don’t do with Heyting models.

It should be observed that the choice of a set-theoretic, ZF-style framework
is personal preference, and has little to do with the actual content of the results
or constructions. Frequently enough category or type theory is used to build
models, and there could be other ways to do it that have yet to be discovered.
While there are some differences among what can be expressed most naturally
and easily, all these formalisms are powerful and flexible enough that they can
simulate each other. One reason to want a set-theoretic development is that
ZFC is nominally the gold standard for mathematics, and so something in that
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style might be more accessible to general mathematicians and in particular to
logicians. To anyone well-versed in a different foundational paradigm, it should
be easy enough to translate the material here.

The goals here include providing an up-to-date introduction to the subject,
to serve as a reference, to introduce some uniform terminology and notation,
and to bring together in one place various constructions that are scattered in
the literature. One limitation of this work is that it takes insufficient account
of some of the earlier literature. In addition to those listed in the references
below, researchers such as Beeson, de Jongh, Fitting, H. Friedman, Goodman,
Moerdijk, J.R. Moschovakis, Scowcroft, Smorynski, and S. Weinstein, among
others, produced work directly relevant to the topic at hand, in some cases
current work. A more thorough study would incorporate more of this earlier
material.

2 Heyting Models, or Constructive Forcing

From the name Heyting or Heyting-valued model, one might think of any model
in which the value of an assertion is a member of a given Heyting algebra. This
indeed is the meaning used in [33], where they need such general models to show
that Heyting models in their sense form a complete semantics for constructive
logic. Historically and practically, though, this is not how Heyting models have
been used. Instead, the models that have actually been used have assigned
Heyting values to basic properties (like set membership) of only standard ob-
jects, as opposed to non-standard objects like infinitesimal reals or non-standard
integers, and not imposed any other restrictions on the objects to be considered,
resulting in what is called below the full model. 1 Once this Heyting-algebra
construction was applied to sets, it was quickly realized that this is the con-
structive analogue of how Boolean algebras are used classically: Boolean-valued
models, more commonly called forcing. The essential (and really only) differ-
ence between forcing and Heyting models is that in forcing something is true
when it is forced densely, whereas in a Heyting model for something to be true
it must be forced by the entire space.

By way of an example, consider what must be the simplest forcing partial
order of all, 2<ω, the set of finite binary sequences. The empty condition forces
∃n G(n) = 1, where G stands for the generic, because every condition can be
extended to a condition with a 1 in it. In fact, the set of such conditions is the
entirety of 2<ω, save for those nodes of the form 0n, finite sequences of 0’s. If
we now view such finite binary sequences as names for open sets within Cantor
space, then the open sets forcing a particular occurrence of 1 cover the entire
space, except for the one point 0ω. Because it’s not the entire space which is
so covered, the empty condition does not force ∃n G(n) = 1 under the Heyting
semantics.

1The first topological interpretations of constructive systems [31,32] were for propositional
logic, so the question of the kind of objects allowed was not yet relevant. When extended
to predicate logic [27], the objects needed for the examples were standard objects. The first
application of topological models to higher-order systems, Scott’s interpretation of analysis
[29,30], uses full models up to the type level being considered. Grayson’s extension to full set
theory [10, 12] is where we first find the full model, as presented here, even though not with
that name.
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In the remainder of this section, we define full Heyting-valued models, and
give examples and intuition for topological models (Heyting models specialized
to the opens of a topological space as the Heyting algebra) and non-spatial
models (Heyting models that are not topological).

2.1 Full Heyting-valued Models

As described above, the difference between classical and constructive forcing is
in the interpretation of truth, and pointedly not in the choice of objects. So
the following definition of the members of the full model is identical to that of
the terms of the standard forcing language. Furthermore, we can refer to this
model as V [G], since it is the smallest model containing the ground model V
and the generic G (defined below).

The (full) Heyting model over a complete Heyting algebra H consists of the
class of names or terms, defined inductively by

Vα[G] =
⋃
{P(H× Vβ [G]) | β ∈ α},

V [G] =
⋃

α∈ORD

Vα[G].

Given σ ∈ Vα[G], the meaning of 〈h, τ〉 ∈ σ is that the truth-value or degree of
truth of τ ∈ σ is (at least) h. The idea behind calling it the full model is that
you throw in absolutely everything you can. Sometimes one does consider inner
models of V [G], which we also take to be Heyting models, hence the qualifier of
fullness.

The standard embedding ·̌ of the ground model V into V [G] is defined in-
ductively by

ǎ = {〈>, b̌〉 | b ∈ a}.

A particularly important object, the generic, not from the ground model (except

in degenerate cases), is given by the name

G = {〈h, ȟ〉 | h ∈ H}.

The generic is characterised by the equation

Jȟ ∈ GK = h.

The semantics of the sentences with parameters is given inductively on the
sentences, with the base cases of ∈ and = given by induction on the ranks of the
parameters. There are two equivalent ways of doing this: defining the relation
h 
 φ, h ∈ H and φ a sentence, or defining the function JφK taking values in H.
The connection between those two is that h 
 φ iff h ≤ JφK. By analogy with
the way forcing is usually developed, we do the former.

• h 
 σ ∈ τ iff h is covered in the sense of the Heyting algebra by some
H ⊆ H (that is, h ≤

∨
H), and for all h′ ∈ H there is an 〈h̄, σ̄〉 ∈ τ such

that h′ ≤ h̄ and h′ 
 σ = σ̄.

• h 
 σ = τ iff for all 〈h̄, σ̄〉 ∈ σ, h ∧ h̄ 
 σ̄ ∈ τ , and vice versa.
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• h 
 φ ∧ ψ iff h 
 φ and h 
 ψ.

• h 
 φ ∨ ψ iff h is covered by some H, and for each h′ ∈ H either h′ 
 φ
or h′ 
 ψ.

• h 
 φ→ ψ iff for all h′ ≤ h if h′ 
 φ then h′ 
 ψ.

• h 
 ⊥ iff h = ⊥ in H. (Equivalently, ⊥ can be taken to be 0̌ = 1̌.)

• h 
 ∀x φ(x) iff for all σ h 
 φ(σ).

• h 
 ∃x φ(x) iff h is covered by some H and for all h′ ∈ H there is some σ
such that h′ 
 φ(σ).

As usual, ¬φ is taken to be φ → ⊥. To say that a proposition φ is true, or
satisfied, in such a model means 1 
 φ, otherwise A is said not to be true or
to fail. Being false is a stronger property: φ is said to be false if ¬φ is true, or
equivalently the only value forcing φ is ⊥.

Proposition 1. The axioms and rules of inference of constructive logic and the
equality axioms are all true under this interpretation.

Theorem 2. Under IZF, the full model satisfies IZF [10]. Under CZF, the full
model satisfies CZF [9].

It is an interesting question which axiom systems are self-realizing; that is,
which theories T prove that the full Heyting model satisfies T . 2

2.2 Topological Models

In most cases, H is the cHa of the open sets of some topological space T , and
G can be considered to be a new element of T . Of course, G is not in the
ground model, so it would not be possible for G to be a member of Ť . But
typically T has an independent description, and if T is interpreted in V [G] via
that description, then G will be a member of T . I know of no way to make
precise the notion of G ∈ T V [G] and to prove when that holds, so for now it
seems that the only way to convey to the reader what’s going on is via examples.

Let’s look first at what is no doubt the simplest example, in which T is
taken to be Cantor space, mentioned above. Being quite literal, G is forced to
be a set of finite binary sequences. It is easy to see that

⋃
G is forced to be an

infinite binary sequence, interdefinable with G (the latter as the set of proper
initial segments of

⋃
G), so we can identify G and

⋃
G. Even though G is not

even in the ground model, as an infinite binary sequence it can be taken to be
a member of Cantor space as interpreted in the extension.

Another simple example is letting T be the reals (with the standard topol-
ogy) [8]. 3 A basic open set is an open interval I, which as a forcing condition
means “the generic is in me.” Since R is covered by intervals of arbitrarily

2For instance, typically one does not expect that substituting Collection by Replace-
ment will keep a theory self-realizing. The problem is that even if a model satisfies
∀x ∈ X ∃!y φ(x, y), the choice of a term for y may not be unique, so it may not be pos-
sible to use Replacement in the meta-theory.

3Not only does [8] contain this example, it is the first work in the style of this article,
containing many examples of Heyting models and general theorems about them.
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small length ε > 0, each of which approximates G to within ε, the generic is a
Dedekind cut. How is this useful? The two standard ways of constructing R
from Q are Dedekind cuts and Cauchy sequences. It is not hard to see that every
Cauchy sequences yields a Dedekind cut. The other direction is a nice exercise
for bachelors students. Invariably Excluded Middle is used in that construction,
in the form of a case split (because the alternative is to use Countable Choice,
and most would automatically avoid that as just too dishonest). The suspicion
arises quickly that without EM and CC this converse would not hold. The likely
place to look for a counter-example would be a generic Dedekind cut, because
as a generic it will have only the properties it is forced to have. As it turns
out, this is exactly the case, as the generic over R is not a Cauchy sequence of
rationals.

After this last example, one might ask whether the next step might be to
take a generic Cauchy sequence, and whether that gets us anything [19]. What
one typically wants from a Cauchy sequence, in order for it to be useful, is a
modulus of convergence. That is, for a Cauchy sequence (xn), for every ε > 0
there is a spot beyond which the members of the sequence stay within ε of each
other. A modulus of convergence is a function that on input ε = 1/n yields
such an index. Once one starts to think that the existence of such a modulus
might not be provable, the most likely place to look at for a counter-example
is a generic Cauchy sequence. A basic open set is a finite sequence of rational
numbers, which is an initial segment of the generic, along with an open interval,
which constrains the generic in that all further entries in the generic have to
come from this interval, as well as the limit of the generic. As expected, the
generic has no modulus of convergence. (It bears mention that this is a building
block in the construction of a model in which the Cauchy reals, equivalence
classes of Cauchy sequences of rationals, are not Cauchy complete. For more on
this, see section 6.2 on permutation models.)

Sometimes care must be exercised in understanding G as a member of T ,
because T can be understood in classically equal yet constructively different
ways. Take for instance forcing with R, as above. That would have to yield a
generic real. But what is a real? If the meta-theory is classical, then R could just
as well be taken to be Cauchy sequences as well as Dedekind cuts, so one might
be misled to think of the generic as a generic Cauchy sequence. This confusion
is not hard to resolve in this case, because what determines the generic is not
so much the nature of the points in the topological space being used, but rather
the topology on them. For the case at hand, a basic open set I is naturally
partial information about a located cut, with the rationals less than I being in
the lower part and those greater than I in the upper. In other cases, the right
way to view T is not so clear.

Perhaps the cleanest example of that is letting T consist of finite subsets of
R2 with the Vietoris topology, which is the topology induced by the Hausdorff
metric [20]. To be explicit, a basic open neighborhood of F ∈ T consists of an
open set containing all of F , as well as finitely many open sets each one of which
contains at least one point from F ; there is no requirement that these latter open
sets must cover F . One might first guess that the generic would be a generic
finite subset of R2. A moment’s thought though should make clear that it is
not possible to have a new finite subset of a ground model set. Perhaps though
the generic is a finite subset of R2 as interpreted in the generic extension, and
since there are new reals then there are also new points in R2. This also looks
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problematic, because the next question you should ask is, if the generic is to be
a finite subset of R2, wherever interpreted, what’s its size. None stand out as
being the natural answer. In fact, when one goes to look for members of G, there
aren’t any. But G also isn’t just the empty set. A clue is afforded by the fact
that the topology is induced by the Hausdorff distance function. Each member
F of T determines a distance function d(z, F ) for z = (x, y) ∈ R2, namely the
shortest distance from z to any point in F . Furthermore, F is definable from d.
So T can be viewed as a space of distance functions. As it turns out, that is the
right way to view G, as a generic distance function. From this point of view, it’s
not so surprising that G has no points. That is, using distances given by G, we
could triangulate, and determine regions of the plane that look as though they
contain members of G. These regions are determined only up to ε. So what we
cannot do is ever specify how many points are in each such region. There could
be any finite number. As such, we can never get our hands on any individual
one.

Another such example is the forcing to falsify BD-N [22]. BD-N states that
every pseudo-bounded sequence of natural numbers is bounded. The space to
do this is the set of bounded sequences, appropriately topologized. What one
gets though is not a generic bounded sequence, which is good, because we want
something which is not bounded. Rather, the generic is merely pseudo-bounded.
This can happen because classically bounded and pseudo-bounded are the same.
So it might be unclear at the beginning what the better way is to think about
the space, as the bounded or as the pseudo-bounded sequences. The former is
easier and more familiar, but as it turns out not the more useful way.

2.3 Non-topological Models

While the opens of a topological space form a Heyting algebra, not every Heyting
algebra can be viewed as the opens of a topological space. There are interesting
examples of forcing with non-topological or non-spatial Heyting algebras.

One aspect of forcing with spaces is that you can specialize to a point.
That is, when examining say a particular object in the generic extension, you
can look at what is forced by any neighborhood of a fixed point. As all such
neighborhoods overlap, whatever they force must cohere. For example, suppose
the term r is forced to be a real number. For any ε > 0, the space is covered by
opens that determine r to within ε. So all of the opens of T containing a fixed
point x are enough to determine r exactly, at x. This is essentially the (well-
known) proof that a (Dedekind) real in the extension is given by an arbitrary
continuous function from T to R in the ground model.

The example of specializing to a point which is of immediate application has
to do with the Fan Theorem, which we for now assume holds in the meta-theory.
Let T be forced to be a binary tree with no infinite paths. Consider in the meta-
theory the tree T ′ of those binary sequences not forced by any neighborhood of
a fixed x ∈ T to be out of T . That is, σ is in T ′ when no neighborhood of x
forces σ not to be in T . If T ′ had an infinite branch B through it, then by the
hypothesis on T , some neighborhood of x would force some σ ∈ B to be out of
T . But then that violates σ being on T ′! So T ′ has no infinite path. By the Fan
Theorem in the meta-theory, T ′ is finite, which means x has a neighborhood
forcing T to be finite. This proves the Fan Theorem in all topological models
[8]. Hence, to falsify FT, if a forcing model is possible at all, one needs at least
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a non-topological Heyting algebra.
As it turns out, this is possible [8]. Let K(T ) be the cHa of coperfect

open sets of T . This can be viewed either as the subset of the family of open
sets consisting of only those open sets with complement a perfect set (with a
different join operation), or as the quotient of the opens which identifies O with
O\{x}. This is why K(T ) is not the opens of a space of points: individual
points don’t count, in that if a sentence holds everywhere except a point, then
it holds everywhere. Letting I be the unit interval, K(I × I) falsifies the Fan
Theorem. (The same paper also examines another non-spatial model, K(I).)

Point-free spaces can be used not only to make the Fan Theorem false, they
can be used to make it partially true. The historically first model falsifying
the Fan Theorem is based on the Kleene tree, an infinite computable tree with
no (infinite) computable branch. Classically, the Kleene tree shows that the
computable sets form a model in which Weak König’s Lemma is false. Con-
structively, one can work under recursive realizability, also called Kleene’s first
model K1, which (using later developments here) is a model of full IZF set the-
ory based on computability. The (internalization of the) Kleene tree is in this
model a non-uniform tree, and the fact that it has no computable paths trans-
lates in this model to it having no paths, thereby providing a counter-example
to FAN. In fact, this example does even more for us. The computability of the
Kleene tree translates into its internalization being decidable (meaning mem-
bership in the tree is decidable). So not only is the Fan Theorem violated here,
so is a weak fragment of it, the Decidable Fan Theorem, or D-FAN: every de-
cidable bar is uniform. This is interesting, because some fragments of the Fan
Theorem, including D-FAN, turn out to be equivalent with other statements
that are interesting and natural [14]. Another such fragment is c-FAN, the Fan
Theorem for c-bars (where X ⊆ 2<ω is a c-set if there is a decidable set Y such
that σ ∈ X iff every extension of σ from 2<ω is in Y ) [3]. Easily, c-FAN implies
D-FAN, because every decidable bar is a c-bar. Is the converse implication true?
Classical logic is no help here (in our context with sufficient set existence ax-
ioms), because that makes all versions of FAN true. Kleene realizability doesn’t
answer the question, because it makes all versions of FAN false. But it does
give us a start. Is there a way to start from K1 realizability and make D-FAN
true which is simultaneously gentle enough to keep c-FAN false?

D-FAN can be stated as “for all decidable X ⊆ 2<ω, if X is a bar then X is
uniform.” (Easily, if X is uniform then X is a bar.) Plausibly one could make
D-FAN true by turning decidable bars uniform – by going to a model with non-
standard integers, say, a tree that was infinite could be made uniform by killing
it at some non-standard level; this is the approach taken in [25]. A different way
to make D-FAN true is to consider decidable trees, which by their decidability
can be readily exported into the meta-theory; if they are not uniform internally
then they are not uniform externally, which means that they are infinite, which
means that they actually do have branches (using WKL in the meta-theory);
such a branch could then be included in the model, so that the tree (actually, its
complement) no longer represents a bar. The choice of branch to include must
be made carefully, to preserve IZF. The easiest way to do that is generically.

One’s first guess might well be to force with the tree itself. After all, forcing
with a tree like the full binary tree 2<ω produces an infinite path through it.
That will not work though in the setting at hand. The trees with which we
must be concerned are those like the Kleene tree, in which the terminal nodes
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are dense (as a moment’s thought shows that any tree in which the terminal
nodes are not dense already contains a path). Any such partial order forces
“¬¬ the generic path is finite,” so this does not help. Furthermore, suppose
T is a topological space forcing “there is an infinite path, say P , through a
ground model binary tree T .” Then by specializing to a point x ∈ T we can
build a path through T in the ground model: T forces that for all n there is a
neighborhood of x forcing a necessarily unique sequence of length n to be in P ,
and stringing these sequences together produces an infinite path. So no spatial
forcing will help get paths through Kleene-like trees. The construction that
works is to take the tree you want to shoot a path through and to turn it into a
Heyting algebra by modding out by all the nodes beyond which the tree is finite
[23]. Of course, the forcing just described removes merely one counter-example
to D-FAN. To make D-FAN true, all counter-examples must be removed, which
can be accomplished by iterating this construction. This is described below in
4.1.

3 Kripke Models

Kripke models can provide a certain flexibility that Heyting models do not,
namely the chance to change ground models. That is, in Heyting models, while
different statements can become true when going to different Heyting truth
values, the objects are always built over some fixed ground model. This ground
model might be V , or an inner model like L, or an outer model like a forcing
extension V [G], or a constructive model like realizability, but once selected it
doesn’t change among the various Heyting values. With a Kripke model, the
universe in which an object can be said to live can switch from node to node.

Let’s illustrate this with an example. Consider the sentence “every Turing
machine either converges or diverges.” Its failure is most easily modeled with
realizability. Is there another way to accomplish that? Heyting models as above
will not do: because the integers in such models are standard, con- and diver-
gence there are the same as in the ambient universe. But one can construct a
Kripke model counter-example. Let e be (the code for) a machine the conver-
gence of which is not decided by ZFC. (Such a machine exists, lest the Halting
Problem be decidable: generate the theorems of ZFC and see what they say
about Turing machine convergence.) Easily, {e} diverges in V , because conver-
gence would be witnessed by a natural number and hence ZFC-provable. Let
M be a model of ZFC in which {e} converges and in which V embeds (albeit
not elementarily). Such a model can be seen to exist by considering the theory
“ZFC + {e} converges” along with the diagram of V . (The diagram of V is
in the language expanded with a constant symbol for each member of V , and
consists of all true atomic and negative atomic assertions.) This theory is con-
sistent by Compactness, and so has a model by Completeness, which we take
to be definable over V . Consider the Kripke model with nodes ⊥ and >, with
⊥ < >. The structure at > is M . The structure at ⊥ is built in V , and will
be described in detail shortly as the full model with V at ⊥ and M at > 4; the

4This structure does not have an ordinal embedding, as defined below, and so is not covered
by the development there. Nonetheless, the definition given there of the full model can be
applied in the current case. The only issue is whether this is a model of IZF. It is easy enough
to check directly that it is.
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intuition is that sets at ⊥ look like they come from V and can grow arbitrar-
ily as they move to >. At ⊥, {e} does not converge, because the integers are
standard, but at > it does, because there we’re in M .

What makes the example above go is that some nodes have only standard
sets and others have non-standard sets. This ability to change the ambient
universe is the main way Kripke models are flexible and Heyting models not.

A secondary difference between them is that even when the underlying uni-
verse is taken to be the same at all nodes of a Kripke model, it is natural to
consider sub-models of the full model in terms of the nodes of the Kripke par-
tial order. Typically this happens in the context of some kind of settling, under
which sets are not allowed to grow throughout the whole partial order, but must
remain constant, or settle down, at some point, examples of which are given be-
low. Furthermore, in the presence of certain kinds of settling, it is natural to
consider partial existence: if p < q in the partial order of a Kripke model, there
is no expectation that the universe at q is the image of that at p under the
transition function; in fact, if the universe at p has all settled down by q, then
we will definitely need new sets at q if the model is to violate classical logic. In
contrast, the use of settling with topological models is different. It is possible to
have immediate settling with partial existence, just as for Kripke models, while
using topological ideas (for examples, see sections 4.2.1 and 4.3); but the set-
tling comes into play only because the topology is placed on a tree, where there
is a notion of a child, which is an essentially Kripke-style idea. A different kind
of topological settling is exposited in 4.2.2; but there the settling can happen
without even changing to a different open set, and you can change open sets
arbitrarily without settling, an essentially different kind of settling property. Of
course, one could consider sub-models of the full topological model in which
settling or partial existence is substantive, which is why this distinction is being
called secondary. The fact remains that such constructions in the context of
topological models have not yet appeared in nature, and so this still seems to
be a distinction worth making.

3.1 Full Kripke Models

Analogously to the Heyting models above, there is a notion of a full Kripke
model. The presentation below is a refinement of that in [13].

Let P be a partial order, the elements of which will typically be referred to as
nodes. For simplicity, we assume P has a least element ⊥, although this is really
not necessary. Let p 7→ Vp be an assignment to nodes of models of ZF. Since
these models are typically class models, this assignment cannot be understood
as a set of ordered pairs; rather, it is given definitionally. That is, whether x is
in Vp, as well as the membership relation and equality, are definable uniformly
in x and p.

The full model (over this assignment) will be defined inductively. In order
for this induction to work, since we are not assuming that the Vp’s are actually
well-founded, we need additional structure. An ordinal embedding is an order-
preserving function f from the ordinals of Vp to those of Vq whenever p < q. (So
actually f is an indexed set of functions fpq, but the choice of p and q should be
clear from the context, so we write it polymorphically as simply f .) Moreover,
f must cohere, in that fqr ◦ fpq = fpr. Finally, whenever p < r, there is a
finite sequence p = q0 < q1 < ... < qn = r such that each fqiqi+1 is either an
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isomorphism or an elementary embedding. We say that such an assignment is
admissible if for all p the entire structure beyond p (namely the set P≥p, the
assignment q 7→ Vq (q ≥ p), and the restriction of f to P≥p (i.e. the family fqr,
r > q ≥ p)) is definable in Vp. Without loss of generality we will always assume
that V⊥ = V , since we could confine ourselves to working in V⊥ anyway.

Example 3. Let P be finite, and if p < q choose Vq to be a specific inner
model of Vp. For instance, P = {⊥,>}, V⊥ = V [G] for some forcing generic
G, and V> = V . In this case, the ordinal embedding can be taken to be the
identity function. Or let V⊥ = V and let V> be some ultrapower of V by an
ultrafilter in V . Here the ordinal embedding would be the elementary ultrapower
embedding. (In practice, the ultrafilters will not be countably complete, so that
the ultrapower has non-standard integers.) For an example with P infinite, let
P be ω and each Vn be V , with f as the identity.

Example 4. For an example of how admissibility could fail, let V⊥ = V and
V> = V [G], where ⊥ < > (V [G] is not definable in V ). Or let P be ω, V0
be V , V1 be the ultrapower of V by some non-countably complete ultrafilter U ,
and more generally Vn+1 be the ultrapower of Vn by the image of U in Vn. The
problem here is that P is not a set in any Vn once n > 0.

Remark 5. Even though the first counter-example of V going to V [G] is being
excluded here, it does speak to a major intuition behind constructivism, namely
that of knowing more as time goes on. There are still ways to build a model in
that situation though, just of a different flavor from the full model as defined
below, so they will not be considered here. Also, one might well ask why the
various Vp’s are to be models of ZF and not of IZF. The reason IZF models are
disallowed here is that they would bring up all sorts of additional issues. For
one, there are various kinds of models of constructive theories, whereas classical
theories have only one notion of a model. Beyond that, all of the constructive
models have additional structure – realizability has realizers, topological models
have open sets, Kripke models have nodes – which would have to be accounted
for in the construction to come, adding to the complication. Again, it is possible
to deal with this situation. For an example that simultaneously deals with both
of these issues – later nodes being IZF models properly extending earlier nodes
– see [23].

Given an admissible assignment over the partial order P, we define the full
model M over it. Note that M depends on P, the assignment Vp, and the
embeddings f , mention of which is suppressed in the simple notation M . At
node p, the universe Mp will be the union of the Mp

α’s as α ranges over the
ordinals of Vp. In addition, the transition function kpq from Mp to Mq (q > p)
will be defined as the union of the partial transition functions kpqα defined along
the way, from Mp

α to Mq
f(α). Since these partial transition functions cohere, we

will drop the mention of α. Similarly, we do not mention p and q and refer just
to k, allowing k to act polymorphically.

Definition 1. Mp
α consists of the functions g with the following properties:

• dom(g) = P≥p,

• g � P≥q ∈ Vq ,

11



• g(q) ⊆
⋃
β<f(α)M

q
β , and

• if h ∈ g(q) and q < r then k(h) ∈ g(r).

The transition function k works by restricting the domain.

The definition just given is an induction on ordinals in various models, which
could be non-standard, and so needs further explanation beyond what was of-
fered in [13]. There is no problem working at node p inductively on the ordinals
of Vp, even if those are ill-founded, because the induction is taking place within
Vp. However, the inductive definition given refers also to Mq

β , for q possibly
strictly extending p and β < f(α) in Vq. If the ordinals are the same in Vp and
Vq this won’t be a problem, as the induction in Vp applies just as well to Vq.
Consider though the case in which fpq is an elementary embedding. Within Vp,
an induction at stage α could well assume that Mp

β is well-defined for all β < α,
but it is at best unclear how it would be legitimate to assume well-definedness
of Mq

β for all β < f(α) in Vq. It does not do to use elementarity on the assertion

“for all β < α,Mp
β is well-defined.” Yes, superficially it looks like applying f

yields “for all β < f(α),Mq
β is well-defined,” which is what we want. But recall

what the notation M suppresses: Mp
β is an abbreviation for “the full Kripke

model, up to height β, based on P≥p and the assignment Vq to q ∈ P≥p and f .”
With that realization, applying f to “for all β < α,Mp

β is well-defined” would
yield the well-definedness up to f(α) of the full model based on f applied to the
system P≥p and its assignments (and even that much only if we extended the
notion of f from an elementary embedding on the ordinals to one on all of Vp,
or at least on enough of Vp to include P≥p). There is no reason to think that
f(P≥p) is P≥q and other such problems. Rather, one must quantify over all
partial orders and embeddings too. This same problem, incidentally, also comes
up in the proof of ∈-induction.

Lemma 6. For all ordinals α ∈ V and partial orders P, with least element ⊥
and ORDV⊥ = ORDV , and all admissible ordinal embeddings f , M⊥α is defined.

Proof. Assume inductively that for all β < α,P, and f , M⊥β is defined. Let
Q be a partial order and g an admissible ordinal embedding on the system
Vq, q ∈ Q. For q ∈ Q, let ⊥ = p0 < p1 < ... < pn = q be as given by the
admissible assignment. We show inductively on i ≤ n that within Vpi , for all
β < g(α),P, and f , M⊥β is defined. For i = 0, g(α) = α, and this is just the
inductive hypothesis. Given the inductive assertion for a value i < n, gpipi+1

is either an isomorphism or an elementary embedding. In the former case, if
within Vpi+1

there were some counter-example β < g(α),P, and f , that would
also be a counter-example within Vpi , because Vpi+1

is definable within Vpi . In
the latter case, the elementarity of g transfers the truth of the statement about
g(α) from Vpi to Vpi+1 . So for each q ∈ Q, within Vq, for all β < g(α),P, and
f , M⊥β is defined. In particular, we can take P to be Q≥q and f to be g. For

those choices, the interpretation within Vq of M⊥β is just Mq
β , where M is based

on Q and g. This is all that is needed for M⊥α to be defined.

Theorem 7. The full model satisfies IZF.
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Proof. The proof is basically the same as in [13], even if the context there is
more limited. Namely, in [13], the embeddings fpq all had to be elementary
embeddings from the entire model, as opposed to here, where they are allowed
to be elementary embeddings of the ordinals only, or the identity function. That
makes no difference in the proof, except in the case of ∈-Induction, which we
now show.

Suppose that p |= ∀x (∀y ∈ x φ(y) → φ(x)); we need to show that p |=
∀x φ(x). If not, then for some q ≥ p and g ∈Mq, q 6|= φ(g). This state of affairs
is a true statement in Vq: Vq satisfies “there is a partial order Q, with bottom
element ⊥ and admissible ordinal assignment f and full model K, satisfying
∀x (∀y ∈ x φ(y) → φ(x));, with a counter-example g in K⊥.” Because Vq is a
model of ZFC, and K⊥ is defined via an induction along the ordinals of Vq, there
is an example Q, f,K, and g, with g of least possible rank, say α, among all such
models. In this model, letting x from above be g, ⊥ |= ∀y ∈ g φ(y) → φ(g).
Since g is a counter-example, there is an r ≥ ⊥ and an h ∈ Kr such that
r |= h ∈ g yet r 6|= φ(h). Let ⊥ = q0 < q1 < ... < qn = r be as given by the
admissible assignment. We show inductively on i ≤ n that f(α) is the least
rank of a counter-example within Vqi to induction for φ. For i = 0, f(α) = α
was chosen as the least such rank. For the inductive step, given the inductive
hypothesis for a value i < n, fqiqi+1

is either an isomorphism or an elementary
embedding. In the former case, if f(α) ∈ Vqi+1 were not the least rank of
a counter-example, then restricting everything (Q and the assignment) to the
nodes qi+1 and above, we would have a counter-example of rank smaller than
f(α) within Vqi , contradicting the inductive hypothesis. In the latter case, the
elementarity of f transfers the minimality of f(α) from Vqi to Vqi+1

. Finally,
letting i be n, f(α) is the least ordinal rank in Vr of a counter-example to φ.
But g has rank f(α), and so h as a member of g has a smaller rank. This is a
contradiction.

In the following examples, M is an ultrapower of V via a non-countably
complete ultrafilter. That means V embeds elementarily into M , and M has
non-standard integers.

Example 8. WLPO does not imply MP [13]: The Limited Principle of Omni-
science states that every (binary) sequence either is all 0’s or has a 1. Markov’s
Principle states that if a sequence is not all 0’s then it has a 1. Trivially, LPO
implies MP. Weak LPO is a slight weakening of LPO, that every sequence either
is all 0’s or it’s not. To see that WLPO does not imply MP, let P consist of
⊥ < >, and assign V to ⊥ and M to >. The full model over that structure
satisfies WLPO but not MP. (Consider a sequence which is 0 at all standard
places and has a 1 at a non-standard place.)

Example 9. WKL does not imply WLPO [13]: Weak König’s Lemma states
that every infinite (binary) tree has an infinite branch. It is not hard to see that
WLPO implies WKL: using WLPO, any tree restricted to the descendants of
a node is either finite or infinite, which can be used straightforwardly to build
a branch. To see that the reverses implication fails, let P consist of a bottom
node ⊥ and two incomparable successors >0 and >1. Assign V to ⊥ and to
>0 and M to >1. The full model satisfies WKL: if ⊥ 
 T is an infinite tree,
then at >1 T is interpreted as an infinite tree TM in M ; letting B be an infinite
branch through TM , the object in the Kripke model which looks at ⊥ and >0
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like B restricted to the standard natural numbers and at >1 like just B is the
infinite branch desired. WLPO fails, by considering a sequence which is all 0’s
at standard places and has a 1 in a non-standard place.

3.2 Settling

What characterizes the full model is that sets can keep growing throughout
the partial order. Under settling, the sets have to stop growing at some point.
Within this intuition, a distinction can be made with respect to what kind of
object the set has to settle down to, an external set (say something in V , or more
precisely the internalization of such) or an internal set (something in the model
currently being constructed which may not come from V ). Another way to view
this distinction is whether, once a set has settled down, its members have also
settled down (yes in the former case, no or, more accurately, not necessarily in
the latter).

3.2.1 Settling to External Sets

We describe this kind of settling via two examples.

Example 10. Class-based settling: Let P be the class of ordinals. Of course,
one cannot think of an object in the Kripke model as a function in the standard
sense with domain P, because such a creature would have to be a proper class.
But one could consider a function as being given by a definition. For instance,
the function which at node κ looks like κ is an ordinal which is not the image
α̌ of any ordinal α from V . In this sense, we could speak of the full model over
ORD with V assigned to each node. The model of interest now though is not
this full model, but rather the one consisting of actual set-sized functions, with
domain some ordinal κ. Beyond κ the set represented by this function does not
change; another way to look at it is that it is the image x̌ of a ground model set
x ∈ V . The Kripke set has settled down by κ. The reason to consider this model
is that it shows that CZF does not prove Power Set. In fact, full Separation
holds in this model, so it shows that IZF - Power Set + Subset Collection does
not prove Power Set. [18]

Example 11. Class-based settling to an inner model: This example is a lot like
the previous one, with P being ORD and sets settling down by some ordinal to
something in V , only here the functions are from V [G], where G is generic for
Cohen forcing over V . Normally Cohen forcing is thought of as giving a subset
of N, but by identifying N with N× N, G can be thought of as a relation on N.
This model shows that IZF - Power Set + Exponentiation does not prove Subset
Collection. [18]

It bears observation that this kind of settling produces models which violate
Power Set, by design.

3.2.2 Settling to Internal Sets, and Immediate Settling

The external settling models above violate Power Set, and indeed such models
must do so (in all non-trivial cases). Consider a set X as a possible power set
of 1. If X has settled down to an external set by node p, then the only subsets
of 1 that X could contain there are 0 and 1. If p has some extension then any
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non-trivial model will have a set which looks like 0 at p but then ends up being
1 at some extension, witnessing that X is not the power set of 1 at p. So to
model Power Set, a different kind of settling is needed.

We would like to introduce this settling and its application via an example.
Either of the examples from the section on full Kripke models would do; for
specificity, we will consider the first, the two-node model separating WLPO and
MP. In this model, MP fails, but MP is not false. At >, classical logic holds.
This is called a weak separation. To get a strong separation, one in which MP
is false, we would like to iterate the construction. Your first guess as to how
to do this might well be to assign V to ⊥, M to >, and however you went
from V to M (say via an ultrafilter U), do that to M (say via f(U)) to get a
model non-standard relative to M , place that model at some successor of >, and
then iterate this procedure through ω. With this assignment, you would want
to take the full model. Indeed, WLPO would be true there, just because the
partial order is linear, and MP would fail, because you’re always getting new
non-standard integers. The problem is in defining the model. Admissibility is
lost. If the partial order is the standard ω, then it does not exist in any of the
associated models after ⊥’s V . One could try to piece together the non-standard
ω’s that appear along the way, but this is starting to get complicated.

A simpler approach is just to use immediate settling to an internal set [13]:
instead of taking the full model over ω, allow only those sets that settle down
at the node after they appear. At that next node, there are new sets; that is,
sets that are not in the range of the transition function from previous nodes.
Those new sets can then grow at the node after that, but then they would have
to settle down. This solves the problem of how the partial order, in this case ω,
can get away with not being in the base models: all the information needed to
be built into a set is how it changes once.

Of course, one is then left with the question of how Power Set could hold.
After all, how could X ever be the power set of, say, 1 = {0}, if X must
eventually settle down, yet new subsets of 1 keep on being introduced? The
answer is that X settles down to an internal set. Take the example above,
where P is ω. At any node n ∈ ω, what is the power set of 1 = {0}? Viewed
externally, at n, 1 has three subsets, namely 0 = ∅, 1 itself, and the set that
looks like 0 at n and then grows to 1 at n + 1, which we call 1>. So at n, this
power set looks like {0, 1, 1>}. Under the transition function, 0 goes to 0, 1 to
1, and 1> also goes to 1. But then a new 1> appears, and the power set remains
settled, still having three elements, one of which in some sense was already in
the power set at n and in another sense is new. The set {0, 1, 1>} is not the
internalization of an external set, but it is still settled if it goes to itself at the
next node, even though not all of its members are settled yet.

With regard to the technical details, just as with the full Kripke model
above, the exposition in [13] needs some refinement to be correct. The problem,
as before, is getting the induction right in a context where there may be non-
standard models. The additional challenge in thinking of this as a Kripke model
is that the underlying partial order, say ω as in the example above, is typically
not in any of the Vp’s (except V⊥ = V ) since they are ω-non-standard. The
solution makes essential use of the fact that the settling is immediate, so that
the model and the semantics can be defined locally, with reference to only the
immediate successor nodes. This will appear in [1].
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3.2.3 Uniform and Non-uniform Settling

Immediate settling is just a special case of the more general uniform settling.
Under uniform settling, one starts with a partial order P in which the terminal
nodes are dense (every node has an extension which is terminal). Then one
places a copy of P (actually, f(P), the image of P under the elementary embed-
ding) at each such terminal node, and iterates that procedure ω-many times.
Immediate settling is what you get when P consists merely of ⊥ followed by a
set of children (a tree of height 1).

For non-uniform settling, consider the examples given for external settling
(Sec. 3.2.1). Every set there settles down for sure, but the settling is not
uniform: the objects at node 0 settle down at all possible ordinals. In contrast,
the discussion of internal settling was about only uniform settling: every node
p has a set Q of successors such that all sets at p must settle down by all q ∈ Q.
One might thereby make the mistake of identifying external with non-uniform
settling and internal with uniform. We see no reason for this identification to be
valid. Uniformity seems to be orthogonal to internality, in that there could be
internal non-uniform models and external uniform ones. Consider for instance
the Kripke model based on the partial order ω, with V associated to each node.
Take all those sets that settle down to internal sets anywhere along the way.
This is an example of non-uniform settling to internal sets. Also, one can instead
take those sets that settle down the node after they are introduced to something
in V , for uniform settling to external sets. It may not be clear what holds in
these models or why someone would be interested in them; the point remains,
they are perfectly legitimate models. We leave development of this subject to
future work.

3.3 Sideways Settling

There is a different kind of settling that can be useful ([13], Theorem 5.7).
Consider the partial order with bottom node ⊥ and children n for n ∈ ω.
Associate V with ⊥, and the same M with each n. Take the submodel of the
full model of those g’s that are eventually constant (i.e. for some n and all
i > n, g(i) = g(n)).

4 Heyting-Kripke Models

There are constructions that use a mix of ideas from both Heyting and Kripke
models. It would be interesting to know whether it is necessary to have such
a mix to answer the questions for which these mixed models were developed.
It would also be interesting to have some general framework into which these
constructions could be placed. Here we content ourselves with just describing
some examples.

4.1 Iterating Heyting Models

Heyting models are the constructive version of forcing. An important forcing
technique is iteration. What is the constructive analogue of iteration?

Iteration is used when you have to do more than one forcing. If all the
partial orders of concern are in the ground model, then a simpler form, product
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forcing, suffices. If instead some of the p.o.s needed for the forcing are only in the
generic model for earlier forcings, then an actual iteration is necessary. Doing
either a product or an iteration finitely often is unproblematic, constructively
as well as classically. Issues arise only with an infinite number of forcings,
which are naturally arranged along the order-type of some ordinal. Mostly it’s
a question of what to do at limits: at what places along this ordinal should a
condition be allowed to be non-trivial? All of them? Only finitely many? Or
what? Classically, the decision often involves set-theoretic concepts, such as
countability, inaccessibility, or stationarity. Needless to say, these solutions are
problematic constructively, even starting from the idea of organizing the forcings
along a linear ordinal, to say nothing of the other, more advanced concepts.

Fortunately, the use of limits can typically be finessed constructively. Itera-
tion comes up when you want a model satisfying an assertion of the form “every
structure with property A has property B.” This would typically come up when
B implies A, and A and B are close, so they might be equivalent. Suppose you
had a forcing for any structure not satisfying B that would make it not satisfy
A. Then you could just do those forcings, one after the other, for each such
structure, including those that come up along the way, until the process closes
off. At that point, you’d be left with a model in which the only structures left
satisfying A are those you couldn’t force not to have A, namely those with B. If
your context is constructive, though, you don’t actually have to do the forcing
to kill A. It’s enough to threaten to do so. If you’re in a Kripke model, and
some later node does the forcing to kill A, then at the current node it is false
that A holds, since A fails later; this suffices to have the assertion not apply to
the structure at hand.

A concrete example might be useful. Recall that D-FAN is “for all decidable
X ⊆ 2<ω, if X is a bar then X is uniform.” In 2.3 we described how to force to
get a decidable, non-uniform set of nodes to be not a bar. To get D-FAN false,
this forcing would in some sense have to be applied to all decidable, non-uniform
sets, which seems to call for some kind of iteration. In [23] this iteration was
organized as a Kripke-like model. To the bottom node is associated the K1-
realizability model. At any node p, the children are indexed by those Heyting
algebras forced at p to have been constructed as above from a decidable, non-
uniform tree, along with a value from this Heyting algebra. Over this partial
order with associated models, take the full model. As above, D-FAN holds,
because if at a node p a decidable tree is not uniform, some later node forces a
path through it, so at p the tree couldn’t have represented a bar.

What keeps this from being just a Kripke model is the semantics. For
instance, in a Kripke model, a disjunction is true at a node exactly one when
of the disjuncts is true at that node. In the current model, topological (or
Heyting) concepts play a role, in that there is a notion of a set of nodes covering
a node, just as how the join of a set of Heyting values can be greater than
another Heyting value. So in this model, a node validates a disjunction if
it has a cover each member of which validates one of the disjuncts. Similar
considerations apply to membership and the existential quantifier. It should
not be a surprise that some such consideration is necessary, because the nodes
came from Heyting algebras, yet if there were no consideration of such covering
the Heyting structure would be completely lost.

It should be mentioned even if only briefly that due respect much be shown to
the computational (K1) nature of the setting. This does influence the construc-
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tion of the model: the covers used in the semantics are stricter than arbitrary
covers for the Heyting algebras, to make them computational.

4.2 Topological Settling

Settling is an idea that more naturally fits with Kripke models. The basic intu-
ition behind settling is that there is some future stage at which some qualitative
change happens. This is consistent in style with a Kripke model on a discrete
order, such as a tree, where there is a notion of a next step, or in the case of
non-uniform settling a notion of a step; it is inconsistent in style with the sense
behind a topological space, where usually an increase in information is thought
of as an open set gradually or continuously getting smaller. Of course one can
come up with counter-examples to formal versions of those assertions, and we
will even see some below. We still think this is fair as a stylistic description,
one that is usually true. Coupled with the fact that the examples to be given
were developed using a mix of topological and Kripke intuitions, it seems right
to include this topic in the category of Heyting-Kripke models.

4.2.1 Topological Settling to Internal Sets

Suppose you had a topological space in which some singleton sets {x} were open.
In fact, suppose that the set of such points was dense. Then any classically valid
assertion you might want to falsify, even if not true in the induced topological
model, would not be false: it would be not not true. This would be a prime
candidate for iteration, which in this case would be placing another copy of
the space at each of these singleton opens, or some variant thereof. This is
starting to look like the uniform settling discussed briefly above. Where such
a construction has actually come up already, models 11 and 18 and theorem
5.7 of [13], the space was simple, and so ended up looking more like immediate
settling. We describe first an oversimplified version of these models, one that
did not even need to appear in [13], for expository purposes, and then describe
the modifications needed for the other models.

Let U be a non-principal ultrafilter on ω. Let T be the space with points
ω∪{∗}, the discrete topology on ω, and open neighborhoods of ∗ sets of the form
{∗} ∪X, where X ∈ U . Perhaps it is useful to try to view the full topological
over T as a Kripke-like model. Let P have bottom node ∗ and successor nodes
n, n ∈ ω. Then the universe at n is simply V , and at ∗, inductively, the universe
consists of functions g with domain T such that if h ∈ g(∗) then h is also in the
universe at ∗, and {n | h(n) ∈ g(n)} ∈ U . So this is like a Kripke model, only
that, even if something is a member of g at the bottom node ∗, that fact can be
forgotten at some later node; all that must happen is for that membership fact
to hold at ultrafilter-many later nodes. (Of course, this member might itself be
interpreted differently at various later nodes.)

It is a simple matter to iterate this topology: place a copy of T at each
open point n. This can be formalized as follows. Consider the tree ω<ω, finite
sequences of natural numbers. A basic open set O contains a unique shortest
sequence σ, and for all τ ∈ O, {n | τ_n ∈ O} ∈ U . The idea behind the
immediate settling model is that at every node you place a copy of the full
model on T . So at a node σ, you have sets that can change when going to a
child σ_n (as long as they respect the topology when doing so), at which point
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they have all settled down; but then there are new sets that themselves can
change at the next nodes.

We now give the formal details. Since every node looks exactly like every
other node, we can dispense with the tree of sequences, and work just with the
space T . The sets g are defined inductively, as are the functions ki from the
model to itself, which play the role of transition functions in a Kripke model
from ∗ to i. Then g is a set in this model if

• g is a function with domain T ,

• g(∗) is a collection of sets from this model, as is g(i) (where i ∈ ω),

• if h ∈ g(i) then kj(h) ∈ g(i) (i, j ∈ ω), and

• if h ∈ g(∗) then {j | kj(h) ∈ g(j)} ∈ U .

Also, ki(g) is the constant function with value g(i).
For the semantics, we give the interpretation of a formula as a subset of T .

• Jg ∈ hK = {q | ∃f ∈ h(q) ⊥ ∈ Jkq(g) = fK}

• Jg = hK = {q ∈ ω | for all f ∈ g(q) ⊥ ∈ Jf ∈ kq(h)K, and vice versa} ∪
{⊥ | ∀f ∈ g(⊥) ⊥ ∈ Jf ∈ hK and vice versa, and Jg = hK ∈ U}

• Jφ ∧ ψK = JφK ∩ JψK

• Jφ ∨ ψK = JφK ∪ JψK

• Jφ→ ψK = JψK ∪ (ω\JφK) ∪ {⊥ | ⊥ 6∈ JφK ∧ JψK ∪ (ω\JφK) ∈ U}

• J∃x φ(x)K = {q | ∃h q ∈ Jφ(h)K}

• J∀x φ(x)K = {q ∈ ω | for all h ⊥ ∈ Jkq(φ)(h)K} ∪
{⊥ | for all h ⊥ ∈ Jφ(h)K, and J∀x φ(x)K ∈ U}

The actual models used in [13] differ from the above in that ω is partitioned
into infinite subsets, and a copy of U is applied to each of those slices. For
instance, ω could be partitioned into two subsets, the evens and the odds, and,
in terms of an open set O on ω<ω, if σ ∈ O, then both {k | σ_2k ∈ O} and
{k | σ_2k + 1 ∈ O} must be in U .

4.2.2 Topological Settling to External Sets

This topic was first developed to find a model of CZFExp, that is, CZF with the
Subset Collection axiom replaced by Exponentiation, in which the Dedekind
reals do not form a set [26]. Since that theory does suffice to show that the
Cauchy reals form a set, this is a strong way of separating the Dedekind and
Cauchy reals. Two aspects of such a construction quickly come to mind. One is
that the Cauchy and Dedekind reals would have to be unequal; the most natural
model for getting that is the topological model over the reals. The other is that
Subset Collection must fail; the model for getting that which we saw above is
settling to external sets. So the obvious candidate for the task at hand is the
topological model over the reals with external settling, whatever that might
mean. In fact, that’s exactly what works.
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Not surprisingly, the definition of this model, based on the reals with external
settling, can be extended to external settling over any topological space [21].
The idea is that not only can a set be specified more by shrinking the open set
you’re taking as truth, as usual in topological models, you can also specialize
to a point in the set. At that moment, the universe of sets you were looking at
becomes the ground model. At the same time, a new universe of variable sets
appears, based on the same space. We give the formal details.

Definition 2. For a topological space T , a term is a set of the form {〈Ji, σi〉 |
i ∈ I} ∪ {〈rh, σh〉 | h ∈ H}, where each σ is (inductively) a term, each J is an
open set, each r is a member of T , and H and I are index sets.

Definition 3. For σ a term and r ∈ T , σr is defined inductively on the terms
as {〈T, σri 〉 | 〈Ji, σi〉 ∈ σ ∧ r ∈ Ji} ∪ {〈T, σrh〉 | 〈r, σh〉 ∈ σ}.

Definition 4. J 
 σ = τ iff for all 〈Ji, σi〉 ∈ σ J ∩ Ji 
 σi ∈ τ and vice versa,
and for all r ∈ J σr = τ r

J 
 σ ∈ τ iff for all r ∈ J there is a 〈Ji, τi〉 ∈ τ and Jr ⊆ Ji containing r
such that Jr 
 σ = τi

J 
 φ ∧ ψ iff J 
 φ and J 
 ψ
J 
 φ ∨ ψ iff for all r ∈ J there is a Jr ⊆ J containing r such that Jr 
 φ

or Jr 
 ψ
J 
 φ→ ψ iff for all J ′ ⊆ J if J ′ 
 φ then J ′ 
 ψ, and, for all r ∈ J , there

is a Jr ⊆ J containing r such that, for all K ⊆ Jr, if K 
 φr then K 
 ψr

J 
 ∃x φ(x) iff for all r ∈ J there is a Jr ⊆ J containing r and a σ such
that Jr 
 φ(σ)

J 
 ∀x φ(x) iff for all σ J 
 φ(σ), and for all r ∈ J there is a Jr ⊆ J
containing r such that for all σ Jr 
 φr(σ).

In this last definition, when T = R, because of the homogeneity of the space,
the case of → can be simplified to “for all J ′ ⊆ J if J ′ 
 φ then J ′ 
 ψ, and,
for all r ∈ J , if R 
 φr then R 
 ψr.”

Theorem 12. The model given by the semantics above satisfies Infinity, Pair-
ing, Union, Extensionality, Set Induction, Bounded (i.e. ∆0) Separation, and
Collection. It also satisfies Eventual Power Set: for every X there is a C such
that everything in C is a subset of X, and every subset of X is not unequal to
everything in C. If T is locally connected then Exponentiation holds. If T is
locally homogeneous then Full Separation holds.

4.3 Topological Sideways Settling

There is a topological version of the sideways settling model from 3.3, iterated
via immediate settling ([13], Theorem 5.7). Let U be a non-principal ultrafilter
on ω; also, identify ω with ω×ω. Let T be ω∪{⊥}. Take the discrete topology
on ω; for neighborhoods of ⊥, let A ∪ {⊥} be open exactly when each Ai is in
U , where Ai is the ith slice of A, using here the identification of ω with ω × ω.
Take the submodel of the full model of those sets g that eventually settle down
on slices: for some j and all i ≥ j, the value of g is constant on the ith section
of ω.
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5 Classical Outer Models

We have so far been using the idea of an outer model as something into which
V embeds. At the same time, almost all of the constructions and examples we
have seen can be done within V . For example, a full Heyting-valued model can
be taken to be an extension of V by the inclusion of a generic; at the same time,
just like with Boolean-valued models, the entire structure can be developed
within V . It is at this point that the classical mathematician has the option
to call Boolean-valued models forcing, pull in a generic G from outside of V ,
and work in the two-valued model V [G]. The constructivist does not have this
option. Nevertheless, we can still avail ourselves of this two-valued outer model
V [G], to help us in building our constructive models.

An example of this we have seen already: the second example in 3.2.1, about
Kripke settling to external sets, when we took eventual settling of a set in V [G],
G Cohen generic over V , to something in V .

In 6.1.2 below, we will see another example of the use of V -generics in
combination with inner models.

For the rest of this section, we consider an application of generics over V to
independence results around the Fan Theorem.

In sections 2.3 and 4.1, there were sketches of two models in which the Fan
Theorem failed in various ways. Let’s put this into context. The Fan Theorem
says that every bar is uniform. The X-Fan Theorem, a.k.a. X-FAN, says that
every X-bar is uniform, for any choice of a property X. We have already seen
D-FAN, the Fan Theorem for decidable bars, and c-FAN, the Fan Theorem for
c-bars. Extending the notion of a c-bar, a Π0

1 bar is a bar which is definable
as a Π0

1 set, which can be understood as a set given by a Π0
1 formula, or as an

intersection of countably many decidable sets. Then Π0
1-FAN states that every

Π0
1 bar is uniform. Over IZF, the following implications are trivial:

Full FAN⇒ Π0
1−FAN⇒ c−FAN⇒ D−FAN⇒ IZF.

The natural question is whether any of those implications reverse. Some have
long been known not to. For instance, the recursive realizability model shows
that IZF does not prove D-FAN. As observed in [25], the construction from
[8] shows that Π0

1-FAN does not imply the full Fan Theorem. [3] shows that
D-FAN does not prove c-FAN over a weak base theory. In [25] a technique is
developed which shows all of these non-reversals, including that c-FAN does not
imply Π0

1-Fan. It is this technique, different from the two already discussed,
that interests us here.

To develop some intuition, ask yourself, how could FAN fail? It is hard to
see how FAN could fail without there being a specific counter-example. There
are other instance in which a ∀x∃y statement fails without a counter-example,
because there is just no uniform way of going from an x to a y. In the case of the
Fan Theorem though, the y would be a finite level of the binary tree witnessing
the uniformity of the bar. If there were such a y, it should be easy to find, by
just going through the full binary tree level by level until the uniform bound is
found. Instead, one can more readily imagine a counter-example, a set of nodes
which is not uniform, but it still represents a bar, because one cannot find a
path missing that set. How could that be the case? You can start at the root 〈〉;
if only one of 〈0〉 and 〈1〉 is in the tree (i.e. is not in the bar), then your choice
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of successor is clear; you keep going until both children are in the tree – then
what? If you happen to choose a child beyond which the entire tree dies, your
goose is cooked. For X to be a non-uniform bar, there would have to be no way
of predicting, when confronting a tree split, which if either of the two sub-trees
will die. That’s the cleverness of the Kleene tree: membership on this infinite
tree is computable, yet it is not computable when a sub-tree will entirely die –
there is no computable look-ahead mechanism. Hence if your universe consists
only of computable objects, this tree provides a counter-example, actually a
decidable counter-example, to the Fan Theorem.

It would be nice to get an example like the Kleene tree which is more
amenable to manipulation, so that we can not only falsify D-FAN but also
separate the varieties of FAN. What is the essence of the Kleene tree? From
the point of view of computability, subtrees die out in seemingly random, un-
predictable ways. The ultimate in set-theoretic unpredictability is forcing. A
Kleene-like tree can be built generically. Let a forcing condition be an assign-
ment to finitely many binary sequences of one of three labels: IN, meaning in
the putative bar (as well as all of its descendants), OUT, meaning not in the
bar although there’s nothing to stop the bar from being uniform beneath it,
and ∞, meaning the tree beneath that node is infinite. This infinitude beneath
an ∞-labeled node is enforced in that at no time may a condition assign IN or
OUT to all descendants at some fixed level; if all extensions of an ∞ node of
length n are labeled, then at least one of those labels must be ∞. The generic
G will be a tree with labels OUT sprinkled seemingly randomly beneath labels
of ∞. Of course, one can easily find a path through this tree: at a node labeled
∞, take a child labeled ∞, which is guaranteed always to exist. What if we
erase the labels ∞, and replace them with OUT? Notationally, this would be
substituting G with proj(G), the projection of G onto IN-OUT-valued nodes.
This is exactly the information contained in a bar – not which nodes are part
of infinite vs. finite sub-trees, but which nodes are in vs. out of the alleged bar.
Not surprisingly, no infinite path through this tree will be computable from the
tree.

This is of course just a start. One can erase the ∞ labels from the tree
easily, but it is another matter to erase the ∞ information from the model.
The difference between those OUT nodes rooting finite sub-trees and those
rooting infinite ones must be obscured. At the same time, for the tree to remain
decidable, we no longer have any choice about this labeling; once an IN-OUT
decision has been made, we need to stick with it. The only solution seems
to be to use non-standard integers. By taking the ultrapower of this model
using a countably incomplete ultrafilter, we get an elementary extension M
with non-standard integers. Now we can take the image of G, call it i(G), in
this ultrapower M. There is nothing stopping us from changing finitely many
∞’s to OUTs in i(G), even on standard nodes, and of course changing all of
their standard descendants to OUTs also, as this does not affect proj(G). What
it does do is free us up to change all of the descendants on some non-standard
level to INs. If we can do this coherently, then any branch that went through a
node formerly labeled∞ will indeed hit the alleged bar, albeit at a non-standard
level, but no matter.

The way to do this coherently is to arrange all of the various ∞-OUT sub-
stitutions as nodes in a Kripke model, in the iterative style described in 4.1.
The bottom node ⊥ of this model is assigned the model V [proj(G)], to use the
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Kripke terminology from above. The immediate successors of ⊥ are indexed by
the IN-OUT labeled trees H inM which arise from i(G) as described, of course
as determined in V [G], since a distinction has to be made between standard and
non-standard nodes. Some of these trees H will end up being finite in the sense
ofM; those yield terminal nodes in the Kripke model. Others will not, and the
construction of the Kripke model continues on from there, with children of H’s
node being determined just the way the children of ⊥ were. In the end, the tree
proj(G) will have no paths, because whatever a potential path might look like
at some node, there will be some future node in which that path is already on
a dead end.

As described, this model falsifies D-FAN. To get any of the other separations
is just a matter of hiding the tree proj(G) better. For instance, proj(G) could
be hidden as a c-tree (the complement of a c-bar), thereby falsifying c-FAN, and
if this is done slyly enough, D-FAN will not be disturbed.

It should be mentioned that the model given does not make ¬D-FAN true,
but merely make D-FAN not true. The reason is that the terminal nodes of
the Kripke model are dense, so ¬¬D-FAN is true. To get instead ¬D-FAN
to hold, one could imagine iterating this construction from all of the terminal
nodes. This might involve using settling as described above, although in a more
intricate form. The partial order is more complicated, and we would constantly
need to pull in generics from outside. This is left for future work.

6 Inner Models

Classical set theorists have identified and studied different kinds of inner mod-
els: L-like inner models for large cardinals, permutation sub-models of forcing
extensions, HOD. Here we will examine two, L and permutation models. It
would be interesting to see what happens and what could be done with HOD.

6.1 L: Constructibility Meets Constructivism

L is often called the universe of constructible sets, but this kind of constructibil-
ity has little to do with constructivism. Still, those notions are compatible, and
it is an obvious question what happens with L constructively.

6.1.1 The Development of L

As first noticed by William Powell (in unpublished notes), the definition of
L can remain essentially unchanged, mod the standard way of avoiding the
successor-or-limit case split: Lα =

⋃
β∈α def(Lβ), where def(X) is the collec-

tion of definable subsets of X. (For a published version see [16], which also
contains the rest of this sub-section.) One would then like to prove some of the
basic theorems about L. It is at this point that the problems start.

The first goals would be to show that L is a model of IZF and that LL = L
(a kind of absoluteness of L, from the ordinals). It plays a role just what the
meta-theory is taken to be. Through most of this article, the meta-theory is for
simplicity taken to be ZFC. If we were to do that when studying L, then one
is left with classical L. Instead, what one wants is to develop L constructively,
within IZF or something similar. The axioms at issue are the ones around Col-
lection. Classically, over the other ZF axioms, Replacement, Collection, and
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Reflection are all equivalent. The soft proofs that Reflection implies Collection,
which implies Replacement, go through constructively. The reverse implica-
tions do not. So it can make a difference which version of IZF you’re working
in: IZFRep (with Replacement), IZF (with Collection), and IZFRef (with Re-
flection).

Reflection is very strong, and you can usually prove what you want to with
Reflection easily. For instance, IZFRef shows that L satisfies IZFRef pretty
easily. In contrast, in the cases at hand, Replacement seems just not to be
enough. The issue is that if X is in L then there is some Lα that X is definable
over; there just may not be a canonical such α (like the least). Let’s examine
the effect that has on a sample case, the proof of Replacement in L. Suppose
that, in L, ∀x ∈ X ∃!y φ(x, y). One needs a bounding set, an Lα such that for
all x ∈ X there is some β ∈ α such that the witness y for x is definable over
Lβ . In order to use Replacement in the meta-theory to bound some such set
of β’s, one would have to pick out some unique such β, which is not clear is
possible. It is easy to see though that Collection suffices: if ∀x ∈ X ∃y φ(x, y),
then ∀x ∈ X ∃βx (∃y ∈ def(Lβx) φ(x, y)); using Collection one can then get
a bounding set for the βx’s; of course, this bounding set would have to be
turned into an ordinal α, by removing all of the non-ordinals and then taking
the transitive closure; this α suffices to produce a bounding set Lα.

Checking the other IZF axioms in L is straightforward for most of them. The
only challenge is Separation. The standard classical argument for Separation
in L goes via Reflection, to which we do not have access. Instead, one has
to argue inductively on formulas. The only difficult cases are the quantifiers.
For ∃, consider φ(x) = ∃y ψ(x, y) and X ∈ L. The collection we want, A =
{x ∈ X | φL(x)}, is in any case a set in V , using Separation there. By the
construction of A, ∀x ∈ A ∃y ∈ L ψL(x, y). Using arguments similar to the
proof of Collection in L, there is a bounding set Y ∈ L for the y’s necessary:
∀x ∈ A ∃y ∈ Y ψL(x, y). By induction, we can use Separation to get {〈x, y〉 ∈
X×Y | ψL(x, y)} in L. The projection of that latter set onto its first components
is definable, and hence in L.

The case of ∀ is even a bit trickier: φ(x) = ∀y ψ(x, y), X ∈ L. With ∃,
the goal was clear: find a set big enough to include enough witnesses. With a
universal statement, there are no witnesses. Instead, one considers the different
subsets of X obtained by restricting the range of y: for each C ∈ L, let AC ∈ V
be {x ∈ X | ∀y ∈ C ψL(x, y)}. (We use the notation AL for the desired set
{x ∈ X | φL(x)}.) Notice that if D ⊇ C then AD ⊆ AC . Consider, in V ,
B = {AC | C ∈ L}. (Even though C here ranges over a class, B is a set, as a
subcollection of the power set of X.) For each b ∈ B there is an ordinal β such
that b = AC for some C ∈ Lβ . By Collection, there in an ordinal α including
such a β for each b ∈ B. Moreover, since Lα is transitive, not only is any such
C in Lα, but also C ⊆ Lα. That means ALα ⊆ b for each b ∈ B. We would
like to show that ALα = AL. For one direction, since L ⊇ Lα, AL ⊆ ALα . In
the other direction, suppose x ∈ ALα . Let y ∈ L. Then A{y} ∈ B. Since
ALα ⊆ A{y}, x ∈ A{y}, which means ψL(x, y), as desired. Inductively, the set
E = {〈x, y〉 ∈ X × Lα | ψL(x, y)} is in L. From E, AL is easily definable as
{x ∈ X | ∀y ∈ Lα 〈x, y〉 ∈ E}.

Turning to the other goal, that LL = L, the classical argument is that,
inductively, α is definable over Lα as the collection of ordinals, so that ORD
⊆ L. Then definability over Lα is absolute, so that LLα = Lα, and you’re done.
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Constructively this falls apart immediately. It is not (always) the case that α is
the set of ordinals in Lα. For example, consider something as simple as the two-
node Kripke model, with nodes ⊥ and >. (We do not distinguish notationally
in the following between sets in V and their canonical internalizations.) Let 1>
be the set with no members at ⊥ and 0 as a member at >, so that > 
 1> = 1.
Notice that L1> = {0, 1>}. Let α = ω ∪ {1>}. Then Lα = Lω ∪ {1>}. The sets
definable over Lα include not only α, but also, for any natural numbers k < n,
those sets x that look like k at ⊥ (i.e. ⊥ 
 y ∈ x iff ⊥ 
 y < k) and are equal
to n at >, which are all ordinals. By way of notation, x+ = x∪ {x}. Then Lα+

includes all of those funny ordinals just described. So one can certainly define
over Lα+ the set of ordinals, but that will be a strict superset of α+. In this
case, one can still get α+ definably over Lα+ , but it should be clear that with a
more elaborate example even that would not be possible. For instance, throw in
some of those funny ordinals into α+, the ones that look like k and then grow to
n, for rather randomly chosen k’s and n’s, calling the result β. Definably over
Lβ are all of those funny ordinals, and there is no good way to pick out exactly
which got put into β. So definably over Lβ we can get a superset of β, but not
β itself. So it is not clear that the ordinal β is in L.

That much being understood, there still is a very different construction to
show that, under IZF, L in the sense of L is L. The reason is not that L
contains all the ordinals, but rather that for every α there is an α∗ in L such
that Lα = Lα∗ . This latter fact is shown inductively. One works in a set X
large enough to include all the β∗’s for β ∈ α. Within L, one cannot use α as
a parameter to pick out exactly the β∗’s, because α may not be in L. Instead,
one uses Lα as a parameter, which is in L. Take α∗ to be the subset of X of
all γ’s such that def(Lγ) ⊆ Lα, which is in L. By the choice of what goes in to
α∗, Lα∗ ⊆ Lα; since each β∗ is in α∗, Lα∗ ⊇ Lα.

6.1.2 Transferring Independence Results from V to L

Although the very basics of L carry over from ZF to IZF, the next level of results,
AC and GCH, apparently do not. The problem seems to be that it is at best
unclear how to do condensation arguments constructively. So ultimately it could
be that the study of L is not so interesting constructively. If we do believe that,
it would be nice to have at least some theorem or proof giving concrete evidence
of such. One possibility is that there are constructions showing that it is not
hard to get an arbitrary set into L by coding it into an ordinal (unpublished).
The upshot is that constructively L might be a lot like V , even be V itself,
regardless of how complicated V is. If it is so easy to get anything into L, even
more so to get L to be V by expanding L, arguably that implies that there is no
use in studying L for its own sake. Here we will sketch more modest examples
tending in the same direction, translating classical independence results over V
into constructive independence results over L [17].

The theories we will be considering are those around admissibility, or KP.
Some gentle extensions of KP have been considered over the years. For instance,
Π2 Reflection implies the main KP axiom, Σ1 Bounding. Also, Resolvability (see
below for its statement) and Σ1 Dependent Choice (as theories extending KP)
each implies Π2 Reflection. Over L, all of these theories are equivalent, but not
in general: any implication that does not follow from what was just said does
not hold, as can be demonstrated by forcing the appropriate reals and sets of
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reals (for details see [17]).
Our interest is of course in the constructive version of KP, namely IKP. This

has not been studied much – the literature might well be limited to [2] and [17].
Perhaps this is because of CZF, which is a significant extension of IKP yet has
the same proof-theoretic strength. Still, IKP is a perfectly coherent theory, and
one can ask about independence results over it. Trivially independence results
over KP are also independence results over IKP. Of interest here is to transfer
the cited independence proofs over KP to independence proofs over IKP in L.
The original proofs are based on generic reals and sets of such; the technique to
effect the transfer is to code the generics as ordinals.

We describe the simplest example of such, that Resolvability does not imply
Σ1 DC. Resolvability is the axiom that the universe is the union of the range
of a ∆1 definable function on the ordinals. Although it is not usually described
this way, the model of Resolvability + ¬Σ1 DC in [17] is very well known, being
the standard permutation model for the failure of the Axioim of Choice. That
is, take countably many mutually generic Cohen reals Gi, i ∈ ω, and the set
G – not the sequence! – of these reals. If the ground model is L, then the
permutation model L(G) is the extension of L by each of the generics as well
as the set G. The resolution is Lα[G] as α runs through the ordinals, and the
failure of AC is actually a failure of Σ1 DC.

The task is to get a model of IKP in which G and its members are in some
sense reflected in ordinals, which then end up being in L. The model will be a
Kripke model with underlying partial order 2<ω. Given σ ∈ 2<ω, let 1σ be the
set which is forced to be 1 (i.e. {∅}, as usual) by any τ extending or incompatible
with σ, whereas any initial segment of σ does not force anything into 1σ. A real
(i.e. infinite binary sequence) R induces a branch B through the Kripke partial
order. A first approximation to B is {1σ | σ is an initial segment of R}. Indeed,
at any node σ along R that’s exactly what we want. But if τ is incompatible
with σ then at node τ the set just listed becomes {1} and all information about
B has been lost. So instead, at node τ , B is taken to consist of those sets 1ρ
such that, for all j between the lengths of τ and ρ, ρ(j) = R(j). That is, the tail
end of R, the part beyond the length of τ , is the path through the partial order
(or rather the p.o.’s reflection in the ordinals) taken by B at τ . Including also
0 into B makes B an ordinal. Let Bi be the branch so induced by Gi. Then
Bi is definable over LBi . Furthermore, letting β be the transitive closure of
{Bi | i ∈ ω}∪{1σ | σ ∈ 2<ω}, we get that {Bi | i ∈ ω} is definable over Lβ . The
ultimate model is gotten by iterating definability, starting with Lβ , ωCK1 -many
times, which is enough to get IKP. Resolvability is, in essence, given by the very
definition of the model, as an iteration along some ordinals of definability. The
failure of Choice in L[G] translates to the failure of Σ1 DC here. It is easy to
see that everything happening here stays in L.

The other models in [17] are of Π2 Reflection plus the failures of Σ1 DC and
Resolvability, and of IKP plus the failure of Π2 reflection, all in L of course.

6.2 Permutation Models

The first permutation model within constructive mathematics was Krol’s [15],
also described in [11] and modified in [28]. Here we will describe the permutation
model from [19], because it has the expository advantage of being simpler.

The motivating question behind [19], from [7], was whether the Cauchy
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reals are Cauchy complete. Classically the reals can be construed many dif-
ferent ways, for instance as Cauchy sequences, or equivalence classes of such,
or Dedekind cuts, which are all equivalent. But whatever you take them to
be, the move from the rationals to the reals is a closure operator, in that it
is idempotent: if you take Dedekind cuts of rationals, then a Dedekind cut of
those things can be converted to an equivalent Dedekind cut of rationals. This
all breaks down constructively. We have already seen (2.2) that the Dedekind
and Cauchy reals might differ, and that a Cauchy sequence might have no mod-
ulus of convergence. It is not hard to imagine other related scenarios, such as
a Cauchy sequence of Cauchy sequences which have no moduli of convergence,
which itself is not equivalent to any Cauchy sequence of rationals. (One could
try to diagonalize through the given sequence of sequences, but you don’t know
how far out to go in each one.) It was the purpose of [19] to go through all such
possibilities, culminating in what seemed like the most difficult, the motivating
question: a Cauchy sequence Ri, with modulus of convergence, of equivalence
classes of pairs, each consisting of a Cauchy sequence rij of rationals and a
modulus for it, which is inequivalent to any Cauchy sequence of rationals.

The limiting factor here is choosing a representative from each equivalence
class. If one had that, then one could simply pick Ri within ε/2 of the limit, and
then within Ri pick rij within ε/2 of its limit, to get a rational within ε of the
ultimate limit. So the issue really is picking a representative of each equivalence
class. This has a similar feel to the standard model of ¬AC, in which there is
a set of reals with no canonical choice of member. So one is naturally led to
think of permutation models. At the same time, there has to be more than that,
since classically one can choose a representative from each equivalence class of
Cauchy sequences. (For instance, use a case split as to whether the limit is
rational or irrational; in the former case, a constant sequence will do, whereas
in the latter, there is a unique rational of the form 1/n closest to the intended
limit.) The solution, or at least a solution, is to take a permutation sub-model of
a topological mode. Generically, take a Cauchy sequenceGi of Cauchy sequences
gij (the latter consisting of rational numbers, and each having the same fixed
modulus of convergence). Then take the sub-model of those sets X with support
a finite set I of the indices i, meaning that arbitrary changes of the gij ’s for
i 6∈ I which do not affect any limits do not change X. For instance, replacing a
sequence 〈gij〉j with its equivalence class [〈gij〉j ] of Cauchy sequences with the
same limit yields a set with support ∅. Similarly, replacing the sequence 〈Gi〉i
with 〈[Gi]〉i produces a set with null support, which is exactly the example we
want. No Cauchy sequence with finite support I can have a limit equal to the
limit of 〈[Gi]〉i, because the former depends only on {Gi | i ∈ I} whereas the
latter does not.

7 A Final Example

As a culmination of this material, we present a construction that uses many
of the ideas and techniques developed here. The argument at the end is only
sketched; a more rigorous development is to appear.

Although the purpose here is not that the result is of particular importance,
but rather that the construction itself is hopefully appealing, still there can be
no model without it being a model of something, and so we give the content
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background. Building on work of [4] and Fred Richman (personal communica-
tion), [6] defines a sequence (xn) in a metric space to be almost Cauchy if for
all ε > 0 and strictly increasing g : N → N there is an N ∈ N such that, for all
n ≥ N , the diameter of {xg(n), xg(n)+1, ..., xg(n+1)} is less than ε (meaning that,
whenever g(n) ≤ i, j ≤ g(n + 1), d(xi, xj) < ε). Easily, every Cauchy sequence
is almost Cauchy. Whether every almost Cauchy sequence is Cauchy is an in-
teresting question, being implied by BD-N [4] but not following from set theory
(in particular, IZF) alone [24]. Various similar formulations of this property
are also discussed in [6], along with their implications among each other, some
being equivalent to almost Cauchyness, others being merely implied by almost
Cauchyness, all of which are mutually equivalent under Countable Choice. The
obvious question is whether the equivalence holds in the absence of CC. The
version we will discuss is the apparently weakest form, which considers not the
entire sub-sequence indexed from g(n) to g(n+1), but rather just the endpoints:
∀ε > 0, increasing g : N → N ∃N ∈ N ∀n ≥ N d(xg(n), xg(n+1)) < ε, which in a
display of unimaginativeness will be called here <-almost Cauchyness.

Theorem 13. <-almost Cauchyness does not imply almost Cauchyness.

Proof. We will provide a model with a <-almost Cauchy, not almost Cauchy
counter-example (G+

n ), so called because it will be the non-negative part max(0,
Gn) of a generic sequence (Gn). For (G+

n ) to be a counter-example, there must
be some positive ε witnessing that. All positive numbers are roughly the same,
so the witnessing ε will be 1. Also, the function g witnessing that (G+

n ) is
not almost Cauchy for ε = 1 must grow fast, because there would have to
be enough room in the interval from g(n) to g(n + 1) for the G+-sequence
to change significantly, without there being an h picking out indices in that
interval that would contradict <-almost Cauchyness. It will turn out that the
exponential function g(n) = 2n suffices. Then, for that choice of ε and g, to
show that the diameter property of almost Cauchyness does not eventually hold
(“∃N ∀n ≥ N”), it would seem at first that we must have unboundedly many
examples n of its failure (“∀N ∃n ≥ N”), which would be difficult. It’s easier
to get one counter-example k, as long as that k is non-standard. The ultimate
model will be a Kripke model based on a tree of height 1, with only standard
integers at ⊥ and including non-standard integers at the successor nodes. Then
at ⊥ there will be no N that works, because any N at ⊥ must be standard, and
there will be a counter-example larger than N at at least one of the successor
nodes.

Thus far the discussion has been about falsifying almost Cauchyness. We
must also validate <-almost Cauchyness. At this point, it’s helpful to over-
simplify matters and temporarily set our sights lower. Whereas<-almost Cauchy-
ness is about all ε > 0 and all increasing functions g, we will be concerned with
only ε’s and g’s from the ground model V , as opposed to ones from the non-
standard extension M . This helps because the counter-example k we want is
non-standard and the ground model has less finesse when it comes to manip-
ulating non-standard elements. In the end, though, we still have to account
for elements from M . So the plan is to develop first an intermediate sequence
(xn), which will be <-almost Cauchy in the limited sense of ground model ε’s
and g’s; the derivation of (G+

n ) will be exactly so that the ground model ε’s
and g’s are the only ones that will be relevant. To summarize, our intermediate
goal will be a sequence (xn), upon which (Gn) and (G+

n ) will later be based,
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that satisfies the <-almost Cauchyness condition for ε and g from V , and seems
to violate almost Cauchyness, in that for some i, j, and k non-standard with
2k ≤ i < j ≤ 2k+1, d(xi, xj) = 1.

Using some standard model theory here, all of the things we need can be
collected into a single type. Taking a, b, and k to be free variables, let’s focus
first on the violation of almost Cauchyness. Consider the set of axioms 2k ≤
a, a < b, b ≤ 2k+1, and the infinite collection b − a > 0, b − a > 1, b − a > 2,
etc. In any model of that type, we would define (xn) as being 0 outside of the
interval [a, b], as increasing from 0 at xa up to 1 at the mid-point (a + b)/2 of
[a, b] by equal-sized, infinitesimally small steps 2/(b − a), and then back down
again to 0 at xb by the same-sized steps. This gives the promised violation of
almost Cauchyness, with i as a and j as (a+ b)/2, with the added benefit that
each step from xn to xn+1 is only an infinitesimal change. The axioms written
down are easily seen to be consistent by compactness.

Turning to validating <-almost Cauchyness, or at least the fragment of it
promised, suppose some (increasing) h from V is such that h misses the interval
(a, b) entirely:

φh := ∃n h(n) ≤ a ∧ b ≤ h(n+ 1).

Then h would be a confirming instance of <-almost Cauchyness, since xh(m) −
xh(m+1) will always be 0. And there will indeed be such instances, for example
the function 2n. This will not always be possible though, for example for the
identity function. In that case, though, we have success for another reason:
xm − xm+1 is always infinitesimal. More generally, for any standard natural
number β (for “bound”), let

ψh,β := ∀n(if h(n) or h(n+ 1)is in the interval (a, b) then h(n+ 1)− h(n) < β).

This case is another confirming instance, since then xh(m) − xh(m+1) is always
either 0 or infinitesimal, in any case less than every standard positive ε. For each
h ∈ V we would like to validate either φh or ψh,β for some standard β. There
is not always a natural choice between those options. For instance, consider the
function that enumerates all the elements between 2n and 2n+1 whenever n is
even and omits that interval entirely when n is odd. Compare that with the
same kind of function but interchanging the parity of n. One of those functions
will fall on the φ side, the other on the ψ, and the choice of which is arbitrary.

Let Ty (for “type”) be a maximal consistent set of formulas extending {2k ≤
a, a < b, b ≤ 2k+1, b− a > 0, b− a > 1, b− a > 2, ...} with formulas of the form
φh and ψh,β . Ty has size at most the continuum c. There are guaranteed to
be realizers a, b, and k for Ty in a model M whenever every consistent set of
formulas of size at most c is realized in M . This property is called the c+-
saturation of M . It is a result of introductory model theory that an ultrapower
is κ+-saturated if the ultrafilter used to develop it is κ-regular, and that ZFC
proves the existence of κ-regular ultrafilters for all κ (see e.g. [5], sec. 4.3, esp.
4.3.5 and 4.3.14). Pick such an M,a, b, and k.

We would like that for each h ∈ V either φh or some ψh,β is in Ty, whereas
all we know so far is that Ty is maximal consistent. Toward this end, consider
some such h. We will show that either φh or ψh,β is consistent with Ty, and so
by maximality will then be in Ty.

Say that n is relevant if h(n) or h(n + 1) is in the interval (a, b), the point
being that only relevant n’s affect the truth of either φh or ψh,β . If no n’s are
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relevant then φh is true in M and hence consistent with Ty. Else consider the
(necessarily non-empty) set of gaps, which are the numbers h(n + 1) − h(n)
whenever n is relevant. If all gaps are standard, then, since the set of gaps is
definable in M , they have a standard bound, say β. Immediately, ψh,β is true in
M and so consistent with Ty. Else there is a non-standard gap. Now suppose
there is a non-standard gap with both endpoints (i.e. h(n) and h(n + 1)) in
the interval [a, b]: a ≤ h(n) and h(n + 1) ≤ b. In this case, a and b could be
re-interpreted to be h(n) and h(n+ 1) respectively. That interpretation would
still satisfy Ty, and make φh true, hence consistent with Ty. If instead there
is no such non-standard gap, then all of the non-standard gaps have to include
one of the endpoints a or b: either h(n) < a (and a < h(n + 1) < b, in order
for n to be relevant), or b < h(n+ 1) (and similarly a < h(n) < b). For each of
those two possibilities there is at most one such n. To summarize the current
hypotheses, there is at least one and at most two non-standard gaps, each of
which contains one of the endpoints a or b. We will show what to do when there
are two. This will call for a two-step procedure. If instead there is only one,
then only one of those steps need be done.

Toward this end, let h(n) < a < h(n+1) < b. If h(n+1)−a is non-standard,
then re-interpret b as h(n+ 1) (and leave a as itself). Under this interpretation
Ty remains true and φh becomes true, showing that φh is consistent with Ty.
Else h(n + 1) − a is standard. Keep that in mind. Now consider the other
non-standard gap, a < h(m) < b < h(m + 1). If b − h(m) is non-standard,
re-interpret a as h(m). As above, Ty remains true and φh becomes true, so is
consistent with Ty. Else b− h(m) is standard, as is h(n+ 1)− a. In this case,
re-interpret a as h(n + 1) and b as h(m). Since the original distance between
a and b was non-standard, and both were changed by only a standard amount,
the distance between their re-interpretations is still non-standard. Hence all
of Ty remains true. Furthermore, what had been the only non-standard gaps
are no longer gaps, as m and n are no longer relevant. So all gaps (if any) are
standard, and we can argue as above to get either φh or some ψh,β consistent
with Ty.

Now that we have a and b as desired, consider (xn) as defined above. If we
were to try to use (xn) as our counter-example to almost Cauchyness, <-almost
Cauchyness would fall flat on its face, because a and b, hence their mid-point,
are readily definable from it. So we must hide a and b, by fuzzing (xn) up. That
calls for a topological model. The idea is to replace each value xn for n between
a and b with a small interval. If that’s all we do, a and b will still be definable
as the first and last places where the sequence is non-zero. So we consider such
a space based on any pair i, j with a ≤ i < j ≤ b.

To be more precise, work for the moment in M . For any i and j with
a ≤ i < j ≤ b, let (xi,jn ) be the sequence which is 0 outside of [i, j], starting
at i grows by 2/(b − a) at each step until the mid-point of [i, j], then shrinks
by the same amount until it hits 0 again at j. Let T i,j consist of all sequences
(yn) which are 0 outside of [i, j] and for which | xi,jn − yn |< 2/(b − a) for n in
[i, j]. A basic open set is given by restricting each yn to an open interval. Let
(Gi,jn ) be the generic sequence, and Gi,j,+n be max(0, Gi,jn ). For any n for which
xi,jn ≥ 2/(b−a), there is no difference between Gi,jn and Gi,j,+n . The importance
of (Gi,j,+n ) is that in the other case there is an open set forcing Gi,j,+n to be 0.

Consider a Kripke model with bottom node ⊥ and successor nodes indexed
by i and j with a ≤ i < j ≤ b. Let G be a set in this Kripke frame which is
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a sequence (indexed by the natural numbers) of reals. At ⊥, all of the natural
numbers will be standard, and at such a standard n, Gn will be 0. At a successor
node indexed by i and j, G will be (Gi,j,+n ). The ultimate model will be a version
of L[G]. There is no harm in having taken V to be a model of V = L, so M
satisfies the same. With that understanding, at a successor node i, j, the only
difference between L[G] and M [(Gi,jn )] is the restriction of the generic to be non-
negative. That can be described as follows. Suppose a term σ in the forcing
language contains a member 〈O, τ〉 with some coordinate of O being an open
interval (r, s) with r < 0. Then 〈O−∞, τ〉 is also in σ, where O−∞ is O with
all such intervals (r, s), r < 0, replaced by (−∞, s); furthermore, if s < 0 too,
then (r, s) will be replaces by (−∞, 0); furthermore, this happens hereditarily.
In short, open sets cannot be distinguished via their parts beneath 0. The
universe at node i, j is a topological model, with truth values being open sets.

What is more critical here is to give the model at ⊥. This is not a topological
model. From the standpoint of the classical meta-theory, every sentence is either
true at ⊥ (and hence also at all successor nodes with top truth value) or not true
at ⊥. The universe and the semantics are defined by a simultaneous induction
on the ordinals in V , using standard Kripke semantics and definability in L.

The set G still provides the counter-example to almost Cauchyness: if at ⊥
for ε = 1 and g(n) = 2n there were such an N , consider what happens at the
node a, b. Why does <-almost Cauchyness hold? Suppose ⊥ 
 g is a function
from N to N. At any successor node i, j, by the connectedness of the space, each
value g(n) is forced by the entire space T i,j . If either i or j is changed by 1, call
the new values i′ and j′. The spaces T i,j and T i

′,j′ overlap on a set which is
open in both spaces. So both spaces force the same value for g(n). That means
that all successor nodes force the same value for g(n). In particular, consider
the node i, i+1 for some i. The open set O in which each component is (−∞, 0)
also forces the same value for g(n), all n, and also forces G to be the constant 0
sequence. So O forces the universe at node i, i+1 to be L, and g to be the image
in M of its restriction to the standard natural numbers in V via its definition
in L. Again, this g has the same values at all successor nodes. So everything
forced at ⊥ to be a function from N to N is given by a ground model function.
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