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Abstract

The approximation of linear time-invariant systems by sampling series is stud-

ied for bandlimited input functions in the Paley-Wiener space PW1
π. It has

been known that there exist functions and systems such that the approxima-

tion process diverges. In this paper we identify a signal set and a system set

with divergent Shannon sampling expression. We analyze the structure of these

sets and prove that they are jointly spaceable, i.e., that each of them contains

an infinite dimensional closed subspace, such that for any pair of function and

system from these subspaces, except the zero elements, we have divergence.

Keywords: Spaceability, Linear time-invariant system, Paley–Wiener space,

Approximation process, Sampling series, Divergence

1. Introduction

A central problem in signal processing is the approximation of linear time-

invariant (LTI) systems, like the Hilbert transform or the derivative, by sampling

series. For a given bandlimited input function f and stable LTI system T , the

canonical approximation process is given by

∞∑
k=−∞

f(k)hT (t− k), (1)
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where hT = T sinc denotes the response of the system T to the sinc-function.

The convergence of (1) is not guaranteed and has to be checked from case to

case.

In [4, 5, 6] the convergence behavior of (1) was analyzed for functions f in the

Paley–Wiener space PW1
π of bandlimited functions with absolutely integrable

Fourier transform. It was shown that for each t ∈ R there exists a stable LTI

system T and a function f ∈ PW1
π such that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ =∞, (2)

i.e., that the approximation error grows arbitrarily large. Using the Banach–

Steinhaus theorem, it is easy to see that, for a fixed divergence-creating system

T , the set of functions f for which (2) holds is a residual set. Equally, for a

fixed divergence-creating function f , the set of systems T for which (2) holds

is a residual set. However, it is not clear whether there exist a residual set of

functions and a residual set of systems, such that for any pair of function and

system from the two sets, (2) holds.

In this paper we study the structure of the sets of divergence creating func-

tions and systems. It would be interesting to know whether these sets contain

subsets which exhibit a linear structure, because in this case any linear combi-

nations of functions or systems from those subsets, which do not result in the

zero elements, would lead to divergence as well. We prove that both sets are

spaceable, i.e., contain a closed infinite dimensional subspace with linear struc-

ture. It is even true that both sets are jointly spaceable in the sense that there

exist two closed infinite dimensional subspaces Dsig and Dsys, such that for all

pairs of functions and systems (f, T ) ∈ Dsig × Dsys, f 6≡ 0, T 6≡ 0 , we have

divergence as stated in (2).

This work was motivated by questions raised by Hans Feichtinger in early

2015 about the structure of divergence-creating signal sets.
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2. General Notation

Let f̂ denote the Fourier transform of a function f , where f̂ is to be under-

stood in the distributional sense. Lp(R), 1 ≤ p <∞, is the space of all measur-

able, pth-power Lebesgue integrable functions on R, with the usual norm ‖ · ‖p,

and L∞(R) the space of all functions for which the essential supremum norm

‖ · ‖∞ is finite. Lp[t1, t2], 1 ≤ p < ∞, is the space of all measurable, pth-power

Lebesgue integrable functions on [t1, t2]. C[t1, t2] denotes the space of all contin-

uous functions on [t1, t2] For 1 ≤ p ≤ ∞, PWp
π denotes the Paley-Wiener space

of functions f with a representation f(z) = 1/(2π)
∫ π
−π g(ω) eizω dω, z ∈ C,

for some g ∈ Lp[−π, π]. If f ∈ PWp
π then g(ω) = f̂(ω). The norm for PWp

π,

1 ≤ p <∞, is given by ‖f‖PWp
π

= (1/(2π)
∫ π
−π|f̂(ω)|p dω)1/p.

We briefly review some definitions and facts about stable linear time-invariant

(LTI) systems, which will be relevant. A linear system T : PWp
π → PW

p
π,

1 ≤ p ≤ ∞, is called stable if the operator T is bounded, i.e., if ‖T‖ :=

sup‖f‖PWp
π
≤1‖Tf‖PWp

π
<∞. Furthermore, it is called time-invariant if (Tf( · −

a))(t) = (Tf)(t− a) for all f ∈ PWp
π and t, a ∈ R.

In this paper we are mainly interested in stable LTI systems operating on

the space PW1
π, i.e., in the case p = 1. By T we denote the set of stable LTI

systems T : PW1
π → PW

1
π. The operator norm of a stable LTI system T is

given by ‖T‖ = ‖ĥT ‖L∞[−π,π]. For every stable LTI system T : PW1
π → PW

1
π

there exists exactly one function ĥT ∈ L∞[−π, π] such that

(Tf)(t) =
1

2π

∫ π

−π
f̂(ω)ĥT (ω) eiωt dω, t ∈ R, (3)

for all f ∈ PW1
π. Conversely, every function ĥT ∈ L∞[−π, π] defines a stable

LTI system T : PW1
π → PW

1
π. Hence, we can identify stable LTI systems

with L∞[−π, π] functions. By Q : T → L∞[−π, π] we denote the isometric

isomorphism that performs this mapping. We have hT = T sinc, where sinc

denotes the usual sinc-function which is defined by sinc(t) = sin(πt)/(πt) for

t 6= 0 and sinc(t) = 1 for t = 0.
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Remark 1. Adding two functions in PW1
π or multiplying a function in PW1

π with

a scalar gives again a function in PW1
π. The same linear structure also holds

for stable LTI systems. This is important for signal processing applications,

because it allows to compose complex systems out of simple ones.

3. Spaceability

Before we state the main result, we introduce the concept of spaceability.

Spaceability, which has recently been used for example in [10, 13, 1, 3, 7], is a

concept that describes the structure of some given subset of an ambient normed

space or, more generally, topological space. A set S in a linear topological space

X is said to be spaceable if S∪{0} contains a closed infinite dimensional subspace

of X. A closely related concept is lineability. A set S in a linear topological

space X is said to be lineable if S∪{0} contains an infinite dimensional subspace.

In [12] it was proved that the set of continuous nowhere differentiable func-

tions on R is lineable. Later, it was shown that the set of continuous nowhere

differentiable functions on C[0, 1] is spaceable [10]. The divergence of Fourier se-

ries was analyzed in [3], where it was shown that the set of functions in L1(∂D),

whose Fourier series diverges everywhere on ∂D is spaceable. Spaceability and

lineability in different setting was further analyzed in [11, 2].

Spaceablility of normed spaces is also interesting for signal processing, be-

cause the linear structure and the norm are both relevant concepts there.

Remark 2. Spaceability is a stronger property than lineability. Every spaceable

set is lineable but not vice-versa.
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4. Main Result

Now we are in the position to state our main result.

Theorem 1. There exist an infinite dimensional closed subspace Dsig ⊂ PW1
π

and an infinite dimensional closed subspace Dsys ⊂ T such that for all f ∈ Dsig,

f 6≡ 0, and all T ∈ Dsys, T 6≡ 0, we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (−k)

∣∣∣∣∣ =∞.

All T ∈ Dsys are such that ĥT is continuous.

Theorem 1 shows that there exist a spaceable set of functions Dsig ⊂ PW1
π

and a spaceable set of stable LTI systems Dsys ⊂ T such that the system

approximation process (1) diverges at t = 0 for any pair of function and system

(f, T ) ∈ Dsig ×Dsys, f 6≡ 0, T 6≡ 0, chosen from the two sets. In the previous

expression, we denoted the zero element by 0. For the signal space it is the

signal f that is identical zero, i.e., f(t) = 0 for all t ∈ R, and for the system

space it is the LTI system T with ĥT (ω) = 0 for almost all ω ∈ [−π, π]. From

the context it will be always clear which zero element we refer to, when writing

0.

Remark 3. Note that is significantly more difficult to show a linear structure in

the set of functions and systems with divergent system approximation process,

compared to showing a linear structure in the set of functions and systems

with convergent system approximation process. If we have two functions f1

and f2, for which (1) converges, it is clear that the sum of both functions, i.e.,

f1 + f2, is a function for which we have convergence as well. Hence, any finite

linear combination of functions with convergent system approximation process

will be a function with convergent system approximation process. However, for

divergence this is not true. Given two functions w1 and w2 for which (1) diverges,

we cannot conclude that the sum of both functions, i.e., w1 + w2, is a function

for which (1) diverges. This can be easily seen by choosing w1 = f1+g and w2 =

f1 − g, where f1 is any function with convergent system approximation process
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and g any function with divergent system approximation process. Obviously,

for the sum w1 +w2 = 2f1 we do not have divergence. This shows that the sum

of two functions, each of which leads to divergence, does not necessarily lead to

divergence.

Remark 4. Theorem 1 is concerned with the sets of functions and system for

which we have the divergence (2). As for convergence, we have the following

situation. For all functions f ∈ PW2
π and all systems T ∈ T we have

lim
N→∞

max
t∈R

∣∣∣∣∣(Tf)(t)−
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ = 0,

i.e. we have lineability of the set of input functions which lead to a convergent

system approximation for all stable LTI systems. Further, for all stable LTI

FIR-systems TFIR, i.e., systems T ∈ T with hT (k) 6= 0 for only finitely many

k ∈ Z, we have for all f ∈ PW1
π that

(Tf)(0) =

∞∑
k=−∞

f(k)hTFIR
(−k),

because only finitely many summands are non-zero. Therefore, we also have

lineability of the set of systems for which (Tf)(0) can be represented by a finite

sampling series for all functions in PW1
π.

The divergence for arbitrary t 6= 0 follows easily from Theorem 1 and is

stated in the following corollary, the proof of which is given after the proof of

Theorem 1.

Corollary 1. Let t ∈ R be arbitrary but fixed. There exist an infinite dimen-

sional closed subspace Dsig ⊂ PW1
π and an infinite dimensional closed subspace

Dsys2 ⊂ T such that for all f ∈ Dsig, f 6≡ 0, and all T ∈ Dsys2, T 6≡ 0, we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ =∞.

All T ∈ Dsys2 are such that ĥT is continuous.

For the proof of Theorem 1 we need the following lemma.
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Lemma 1. There exist two sequences of functions {φn}n∈N and {gn}n∈N with:

1. The functions φn, n ∈ N, are finitely linearly independent, {φn}n∈N ⊂

PW1
π, and there exists a constant C1 such that ‖φn‖PW1

π
≤ C1 for all

n ∈ N.

2. The functions gn, n ∈ N, are finitely linearly independent, {ĝn}n∈N ⊂

C[−π, π], and there exists a constant C2 such that ‖ĝn‖∞ ≤ C2 for all

n ∈ N.

3. For all n,m ∈ N there exists a sequences {Nr(n,m)}r∈N and a constant

C3 such that

lim sup
r→∞

∣∣∣∣∣∣
Nr(n,m)∑
k=0

φn(−k)gm(k)

∣∣∣∣∣∣ =∞

and

sup
r∈N

∣∣∣∣∣∣
Nr(n̂,m̂)∑
k=0

φn(−k)gm(k)

∣∣∣∣∣∣ ≤ C3

for all n̂, m̂ ∈ N with (n̂, m̂) 6= (n,m).

Proof of Lemma 1. For N ∈ N and k ∈ Z let

p∗N (k) =

1− |k|N , −N < k < N,

0, |k| ≥ N,

and define

pN (k) = p∗N (k −N)

as well as

pN (t) =

2N∑
k=0

pN (k)
sin(π(t− k))

π(t− k)
, t ∈ R.

We have

‖pN‖PW1
π

= 1 (4)

for all N ∈ N, which follows from the fact that the L1[−π, π]-norm of the Fejér

kernel is one. Further, for N ∈ N and k ∈ Z, let

q∗N (k) =


− 1
k , −N < k ≤ −1,

− 1
k , 1 ≤ k < N,

0, k = 0, |k| ≥ N,
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and define

qN (k) = q∗N (k −N)

as well as

qN (t) =

2N∑
k=0

qN (k)
sin(π(t− k))

π(t− k)
, t ∈ R.

We have

‖q̂N‖∞ ≤ C4 (5)

for all N ∈ N, which is a simple consequence of [14, p. 183, Remark (b)]. It

follows that

N∑
k=0

pN (k)qN (k) =

N−1∑
k=1

k

N

1

N − k

=

N−1∑
l=1

1

l

N − l
N

=

N−1∑
l=1

1

l
− 1

N

N−1∑
l=1

1

>

N−1∑
l=1

∫ l+1

l

1

x
dx+

1−N
N

=

∫ N

1

1

x
dx+

1−N
N

= log(N) +
1−N
N

(6)

for all N ∈ N. Further, using Parseval’s theorem, (5), and (4), we see that∣∣∣∣∣
2N∑
k=0

pN (k)qN (k)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=−∞

pN (k)qN (k)

∣∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π
p̂N (ω)q̂N (ω) dω

∣∣∣∣
≤ 1

2π

∫ π

−π
|p̂N (ω)||q̂N (ω)| dω

≤ C4

2π

∫ π

−π
|p̂N (ω)| dω

= C4, (7)

for all N ∈ N with a constant C4 that is independent of N .
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Additionally, we need to define several matrices. We construct them itera-

tively. Let

R1 =

1

1


and

R2 =

1 1 0

I2 R1

 ,

where Il denotes the l× l identity matrix. Having defined the (r−1)-th matrix,

the r-th matrix is given by

Rr =


r times︷ ︸︸ ︷

1 · · · 1 0 · · · 0

Ir Rr−1

 .

Elementary facts about Rr, r ∈ N, are:

1. Rr has (r + 1) rows and r(r+1)
2 columns.

2. In each row of Rr we have exactly r elements that are 1, all other elements

are 0.

3. In each column of Rr we have exactly 2 elements that are 1, all other

elements are 0.

For r ∈ N, we further set

Br =


w

(r)
1 (1) w

(r)
1 (2) · · · w

(r)
1 (lr)

w
(r)
2 (1) w

(r)
2 (2) · · · w

(r)
2 (lr)

...
...

...

w
(r)
r+1(1) w

(r)
r+1(2) · · · w

(r)
r+1(lr)

 =
(
Rr Ir+1

)
,

where {w(r)
m (l)}m,l, m = 1, . . . , r + 1, l = 1, . . . , lr denote the elements of the

matrix Br, and

lr =
r(r + 1)

2
+ r + 1 =

r(r + 3)

2
+ 1.

Next, for n ∈ N, we will construct two convergent sequences {φn,r}r∈N and

{gn,r}r∈N. The limit functions will be the desired functions φn and gn. For

r ∈ N let

Nr = 2(r7). (8)
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For r = 1 we set M1 = 0,

φ1,1(t) =

l1∑
l=1

w
(1)
1 (l)pN1

(t− (l − 1)(2N1 + 1)−M1),

g1,1(t) =

l1∑
l=1

w
(1)
1 (l)qN1(t− (l − 1)(2N1 + 1)−M1),

φ2,1(t) =

l1∑
l=1

w
(1)
2 (l)pN1(t− (l − 1)(2N1 + 1)−M1),

g2,1(t) =

l1∑
l=1

w
(1)
2 (l)qN1

(t− (l − 1)(2N1 + 1)−M1),

N1(n, n) = M1 +N1 + (2N1 + 1) + (n− 1)(2N1 + 1)

for 1 ≤ n ≤ 2, and

N1(n,m) = M1 +N1 +

l1∑
l=1

w(1)
n (l)w(1)

m (l)(l − 1)(2N1 + 1)

for 1 ≤ n,m ≤ 2, m 6= n.

For r = 2 we set M2 = M1 + l1(2N1 + 1),

φ1,2(t) = φ1,1(t) +
1

23

l2∑
l=1

w
(2)
1 (l)pN2

(t− (l − 1)(2N2 + 1)−M2),

g1,2(t) = g1,1(t) +
1

23

l2∑
l=1

w
(2)
1 (l)qN2

(t− (l − 1)(2N2 + 1)−M2),

φ2,2(t) = φ2,1(t) +
1

23

l2∑
l=1

w
(2)
2 (l)pN2

(t− (l − 1)(2N2 + 1)−M2),

g2,2(t) = g2,1(t)
1

23

l2∑
l=1

w
(2)
2 (l)qN2(t− (l − 1)(2N2 + 1)−M2),

φ3,2(t) =
1

23

l2∑
l=1

w
(2)
3 (l)pN2(t− (l − 1)(2N2 + 1)−M2),

g3,2(t) =
1

23

l2∑
l=1

w
(2)
3 (l)qN2

(t− (l − 1)(2N2 + 1)−M2),

N2(n, n) = M2 +N2 +
2(2 + 1)

2
(2N2 + 1) + (n− 1)(2N2 + 1),
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for 1 ≤ n ≤ 3, and

N2(n,m) = M2 +N2 +

l2∑
l=1

w(2)
n (l)w(2)

m (l)(l − 1)(2N2 + 1),

for 1 ≤ m,n ≤ 3, m 6= n.

Suppose, for some r with r ≥ 2 we have constructed the number Mr, the

functions φn,r and gn,r, 1 ≤ n ≤ r + 1, the numbers Nr(n,m), 1 ≤ n ≤ r + 1,

1 ≤ m ≤ r + 1. Then we set

Mr+1 = Mr + lr(2Nr + 1),

φn,r+1(t) = φn,r(t)+
1

(r + 1)3

lr+1∑
l=1

w(r+1)
n (l)pNr+1

(t− (l − 1)(2Nr+1 + 1)−Mr+1)︸ ︷︷ ︸
=Ψn,r+1(t)

,

for 1 ≤ n ≤ r + 1,

φr+2,r+1(t) =
1

(r + 1)3

lr+1∑
l=1

w
(r+1)
r+2 (l)pNr+1

(t− (l − 1)(2Nr+1 + 1)−Mr+1),

gn,r+1(t) = gn,r(t)+
1

(r + 1)3

lr+1∑
l=1

w(r+1)
n (l)qNr+1(t− (l − 1)(2Nr+1 + 1)−Mr+1)︸ ︷︷ ︸

=Γn,r+1(t)

,

for 1 ≤ n ≤ r + 1,

gr+2,r+1(t) =
1

(r + 1)3

lr+1∑
l=1

w
(r+1)
r+2 (l)qNr+1

(t− (l − 1)(2Nr+1 + 1)−Mr+1),

Nr+1(n, n) = Mr+1 +Nr+1 +
(r + 1)(r + 2)

2
(2Nr+1 + 1) + (n− 1)(2Nr+1 + 1),

for 1 ≤ n ≤ r + 2, and

Nr+1(n,m) = Mr+1 +Nr+1 +

lr+1∑
l=1

w(r+1)
n (l)w(r+1)

m (l)(l − 1)(2Nr+1 + 1)

for 1 ≤ n,m ≤ r + 2, n 6= m.
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Now, let n ∈ N, n ≥ 1, and r ≥ max{n+ 1, 3} be arbitrary. Then we have

‖φn,r‖PW1
π

=

∥∥∥∥∥φn,r−1 +
1

r3

lr∑
l=1

w(r)
n (l)pNr ( · − (l − 1)(2Nr + 1)−Mr)

∥∥∥∥∥
PW1

π

=

∥∥∥∥∥∥
r∑

s=max{n−1,1}

1

s3

ls∑
l=1

w(s)
n (l)pNs( · − (l − 1)(2Ns + 1)−Ms)

∥∥∥∥∥∥
PW1

π

≤
r∑

s=max{n−1,1}

1

s3

ls∑
l=1

w(s)
n (l) ‖pNs( · − (l − 1)(2Ns + 1)−Ms)‖PW1

π

=
r∑

s=max{n−1,1}

s+ 1

s3
≤ 2

∞∑
s=max{n−1,1}

1

s2
≤ π2

3
<∞,

where we used that ‖pN‖PW1
π

= 1 for all N ∈ N, and the fact that only s + 1

coefficients are non-zero and equal to 1.

Hence, for r → ∞, the sequence {φn,r} converges to a function in PW1
π.

The convergence is in the PW1
π-norm, and consequently pointwise. The same

argument is valid for ĝn,r, where we have convergence in the maximum-norm,

which implies uniform convergence of gn,r on Z.

Next, for n,m ≥ 1, we will show that

lim sup
N→∞

∣∣∣∣∣
N∑
k=0

φn(k)gm(k)

∣∣∣∣∣ =∞. (9)

Let r ∈ N, r ≥ max(m,n, 3) be arbitrary. We consider N = Nr(n,m). For

k ∈ Z with 0 ≤ k ≤ Nr(n,m) we have, according to the constructions of the

function φn and the sequence {φn,r̂}r̂∈N, that φn(k) = φn,r(k). The same holds

true for gm, i.e., for 0 ≤ k ≤ Nr(n,m) we have gm(k) = gm,r(k). Therefore, it

follows that

Nr(n,m)∑
k=0

φn(k)gm(k) =

Nr(n,m)∑
k=0

φn,r(k)gm,r(k)

=

Mr−1∑
k=0

φn,r(k)gm,r(k) +

Nr(n,m)∑
k=Mr

φn,r(k)gm,r(k). (10)
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For the first term in (10) we have∣∣∣∣∣
Mr−1∑
k=0

φn,r(k)gm,r(k)

∣∣∣∣∣ =

∣∣∣∣∣∣
r−1∑

s=max{m−1,n−1,1}

Ms+1−1∑
k=Ms

φn,r(k)gm,r(k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r−1∑

s=max{m−1,n−1,1}

Ms+1−1∑
k=Ms

φn,s(k)gm,s(k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r−1∑

s=max{m−1,n−1,1}

Ms+1−1∑
k=Ms

Ψn,s(k)Γm,s(k)

∣∣∣∣∣∣ . (11)

For each s ∈ N there exists exactly one natural number l(n,m, s), 1 ≤ l(n,m, s) ≤

ls, such that w
(s)
n (l(n,m, s))w

(r)
m (l(n,m, s)) > 0. Hence, for k in the interval

Ms ≤ k < Ms+1, (12)

the expression φn,s(k)gm,s(k) can be non-zero only for those k satisfying

Ms + (l(n,m, s)− 1)(2Ns + 1) ≤ k < Ms + l(n,m, s)(2Ns + 1).

It follows that∣∣∣∣∣∣
Ms+1−1∑
k=Ms

Ψn,s(k)Γm,s(k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Ms+l(n,m,s)(2Ns+1)−1∑

k=Ms+(l(n,m,s)−1)(2Ns+1)

Ψn,s(k)Γm,s(k)

∣∣∣∣∣∣
=

∣∣∣∣∣ 1

s6

Ms+l(n,m,s)(2Ns+1)−1∑
k=Ms+(l(n,m,s)−1)(2Ns+1)

pNs(k − (l(n,m, s)− 1)(2Ns + 1)−Ms)×

× qNs(k − (l(n,m, s)− 1)(2Ns + 1)−Ms)

∣∣∣∣∣
=

1

s6

∣∣∣∣∣
2Ns∑
k=0

pNs(k)qNs(k)

∣∣∣∣∣
≤ 1

s6
C4, (13)

13



where we used (7) in the last line. Combining (11) and (13), we see that∣∣∣∣∣
Mr−1∑
k=0

φn,r(k)gm,r(k)

∣∣∣∣∣ ≤ C4

r−1∑
s=max{m−1,n−1,1}

1

s6

≤ C4

∞∑
s=1

1

s6

≤ C5, (14)

with a constant C5 that is independent of r.

Next, we analyze the second term in (10). There exists exactly one natural

number l(n,m, r), 1 ≤ l(n,m, r) ≤ lr, such that w
(r)
n (l(n,m, r))w

(r)
m (l(n,m, r)) >

0. Hence, for k in the interval

Mr ≤ k < Mr+1,

the expression φn,r(k)gm,r(k) can be non-zero only for those k satisfying

Mr + (l(n,m, r)− 1)(2Nr + 1) ≤ k < Mr + l(n,m, r)(2Nr + 1). (15)

We have φn,r(k)gm,r(k) = 0 for all k ≥ Mr that do not satisfy (15). Since

Nr(n,m) = Mr + (l(n,m, r)− 1)(2Nr + 1) +Nr, it follows that

Nr(m,n)∑
k=Mr

φn,r(k)gm,r(k) (16)

=

Mr+(l(n,m,r)−1)(2Nr+1)+Nr∑
k=Mr+(l(n,m,r)−1)(2Nr+1)

φn,r(k)gm,r(k)

=
1

r6

Mr+(l(n,m,r)−1)(2Nr+1)+Nr∑
k=Mr+(l(n,m,r)−1)(2Nr+1)

pNr (k − (l(n,m, r)− 1)(2Nr + 1)−Mr)×

× qNr (k − (l(n,m, r)− 1)(2Nr + 1)−Mr)

=
1

r6

Nr∑
k=0

pNr (k)qNr (k)

>
1

r6

(
log(Nr) +

1−Nr
Nr

)
> r log(2)− 1. (17)

14



This inequality is valid for all r ≥ max(m,n, 3). Form (10), (14), and (17), we

see that∣∣∣∣∣∣
Nr(n,m)∑
k=0

φn(k)gm(k)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
Nr(n,m)∑
k=Mr

φn,r(k)gm,r(k)

∣∣∣∣∣∣−
∣∣∣∣∣
Mr−1∑
k=0

φn,r(k)gm,r(k)

∣∣∣∣∣
> r log(2)− 1− C5

for all r ≥ max(m,n, 3). Therefore, we have proved (9).

Next, for n,m ≥ 1, we will show that for all (n̂, m̂) 6= (n,m) we have

sup
r∈N

∣∣∣∣∣∣
Nr(n̂,m̂)∑
k=0

φn(k)gm(k)

∣∣∣∣∣∣ <∞. (18)

Let r ∈ N, r ≥ max{m,n, 3} be arbitrary. We have∣∣∣∣∣∣
Nr(n̂,m̂)∑
k=0

φn(k)gm(k)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Nr(n̂,m̂)∑
k=0

φn,r(k)gm,r(k)

∣∣∣∣∣∣
≤

∣∣∣∣∣
Mr−1∑
k=0

φn,r(k)gm,r(k)

∣∣∣∣∣+

∣∣∣∣∣∣
Nr(n̂,m̂)∑
k=Mr

φn,r(k)gM,r(k)

∣∣∣∣∣∣ , (19)

because φn(k) = φn,r(k) and gm(k) = gm,r(k) for 0 ≤ k ≤ Nr(n̂, m̂). For the

first sum in (19) we have ∣∣∣∣∣
Mr−1∑
k=0

φn,r(k)gm,r(k)

∣∣∣∣∣ ≤ C5, (20)

according to (14). Next, we treat the second sum in (19). There exists exactly

one natural number l(n,m, r), 1 ≤ l(n,m, r) ≤ lr, such that

w(r)
n (l(n,m, r))w(r)

m (l(n,m, r)) > 0.

Hence, for k in the interval

Mr ≤ k < Mr+1,

the expression φn,r(k)gm,r(k) can be non-zero only for those k satisfying

Mr + (l(n,m, r)− 1)(2Nr + 1) ≤ k < Mr + l(n,m, r)(2Nr + 1). (21)
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We have φn,r(k)gm,r(k) = 0 for all k ≥Mr that do not satisfy (21), in particular

for all k in the interval

Mr + (l(n̂, m̂, r)− 1)(2Nr + 1) ≤ k < Mr + l(n̂, m̂, r)(2Nr + 1).

If Nr(n̂, m̂) < Mr + (l(n,m, r)− 1)(2Nr + 1), we consequently have

Nr(n̂,m̂)∑
k=Mr

φn,r(k)gM,r(k) = 0.

If Nr(n̂, m̂) > Mr + l(n,m, r)(2Nr + 1), we have∣∣∣∣∣∣
Nr(n̂,m̂)∑
k=Mr

φn,r(k)gM,r(k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Mr+l(n,m,r)(2Nr+1)−1∑

k=Mr+(l(n,m,r)−1)(2Nr+1)

φn,r(k)gM,r(k)

∣∣∣∣∣∣
=

∣∣∣∣∣
Mr+l(n,m,r)(2Nr+1)−1∑

k=Mr+(l(n,m,r)−1)(2Nr+1)

pNr (k − (l(n,m, r)− 1)(2Nr + 1)−Mr)×

× qNr (k − (l(n,m, r)− 1)(2Nr + 1)−Mr)

∣∣∣∣∣
=

∣∣∣∣∣
2Nr∑
k=0

pNr (k)qNr (k)

∣∣∣∣∣
≤ C4, (22)

where we used (7) in the last inequality. Hence from (19), (20), and (22) we see

that ∣∣∣∣∣∣
Nr(n̂,m̂)∑
k=0

φn(k)gm(k)

∣∣∣∣∣∣ ≤ C5 + C4,

where both constants are independent of r. This completes the proof.

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. Let {φn}n∈N and {gn}n∈N be the two sequences of func-

tions from Lemma 1 with the properties 1–3, stated in Lemma 1. For n ∈ N

and t ∈ R let

ξ(1)
n (t) =

1

2n2C1
φn(t),

16



h(1)
n (t) =

1

2n2C2
gn(t),

and

en(t) =
sin(π(t− 2n))

π(t− 2n)
.

According to Paley’s theorem [9, p. 104], {en}n∈N is a basic sequence in PW1
π.

Further, {ên}n∈N is a basic sequence in L∞[−π, π] [14, p. 247]. Now we consider

ξn(t) = ξ(1)
n (t) + en(t)

and

hn(t) = h(1)
n (t) + en(t).

We have ‖e∗n‖PW∞
π

= 1 and ‖ê∗n‖L1[−π,π] = 1. Thus, it follows that

∞∑
n=1

‖e∗n‖PW∞
π
‖ξn − en‖PW1

π
=

1

2
< 1

and
∞∑
n=1

‖ê∗n‖L1[−π,π]‖ĥn − ên‖C[−π,π] =
1

2
< 1.

Hence, {ξn}n∈N is a basic sequence for PW1
π that is equivalent to {en}n∈N, and

{ĥn}n∈N is a basic sequence for L∞[−π, π] that is equivalent to {ên}n∈N [8,

p. 46]. Further, there exists a constant C6 > 0 such that

C6

( ∞∑
n=1

|an|2
) 1

2

≤

∥∥∥∥∥
∞∑
n=1

anen

∥∥∥∥∥
PW1

π

≤

( ∞∑
n=1

|an|2
) 1

2

.

Let Dsig denote the closure in the PW1
π-norm of the set{

M∑
n=1

anξn : an ∈ R,M ∈ N

}
.

We have f ∈ Dsig if and only if
∑∞
n=1|an|2 <∞. For every f ∈ Dsig there exists

a unique l2-sequence {an}n∈N such that

f =

∞∑
n=1

anξn.
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Further let D̂sys1 denote the closure in the C[−π, π]-norm of the set{
M∑
n=1

bnĥn : bn ∈ R,M ∈ N

}
.

We have ĥ ∈ D̂sys1 if and only if ĥ has a coefficient sequence {bn}n∈N with∑∞
n=1|bn| < ∞. The coefficient sequence defines ĥ uniquely. Clearly, every ĥ

uniquely defines a stable LTI system T = Q−1ĥ. We denote the corresponding

space of LTI systems by Dsys1 = Q−1D̂sys1.

Let f ∈ Dsig, f 6≡ 0, and ĥ ∈ D̂sys1, ĥ 6≡ 0, both be arbitrary but fixed.

Then we have the expansions

f(t) =

∞∑
n=1

an(f)ξn(t), t ∈ R,

and

ĥ(ω) =

∞∑
n=1

bn(h)ĥn(ω), ω ∈ [−π, π].

Let n0 denote the smallest natural number n such that |an(f)| > 0, and m0

denote the smallest natural number m such that |bm(h)| > 0. Clearly, we have

f(t) =

∞∑
n=n0

an(f)ξn(t) =

∞∑
n=n0

an(f)en(t)︸ ︷︷ ︸
=A(t)

+

∞∑
n=n0

an(f)ξ(1)
n (t)︸ ︷︷ ︸

=F1(t)

and

h(t) =

∞∑
m=m0

bm(h)hm(t) =

∞∑
m=m0

bm(h)em(t)︸ ︷︷ ︸
=B(t)

+

∞∑
m=m0

bm(h)h(1)
m (t)︸ ︷︷ ︸

=G1(t)

.

For N ∈ N we consider

N∑
k=0

f(k)h(k) =

N∑
k=0

A(k)B(k) +

N∑
k=0

A(k)G1(k)

+

N∑
k=0

B(k)F1(k) +

N∑
k=0

G1(k)F1(k).

Since
∞∑

n=n0

|an(f)|2 <∞,
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we have A ∈ PW2
π, and since

∞∑
m=m0

|bm(h)| <∞,

we also have B ∈ PW2
π. It follows that∣∣∣∣∣

N∑
k=0

A(k)B(k)

∣∣∣∣∣ ≤
(

N∑
k=0

|A(k)|2
) 1

2
(

N∑
k=0

|B(k)|2
) 1

2

= C7,

where the constant C7 is independent of N . The same argumentation is valid

for
N∑
k=0

A(k)G1(k),

i.e., we have ∣∣∣∣∣
N∑
k=0

A(k)G1(k)

∣∣∣∣∣ ≤ C8.

Further, we have

N∑
k=0

B(k)F1(k) =
1

2π

∫ π

−π
F̂1(ω)

(
N∑
k=0

B(k) eikω

)
dω. (23)

Let mN the largest natural number satisfying 2mN ≤ N . If mN < m0 then we

have
N∑
k=0

B(k) eikω = 0

for all ω ∈ [−π, π], i.e., (23) is equal to zero. For mN > m0 we have∣∣∣∣∣
N∑
k=0

B(k) eikω

∣∣∣∣∣ =

∣∣∣∣∣
mN∑
l=l0

B(2l) ei2
lω

∣∣∣∣∣ ≤
mN∑
l=l0

|B(2l)| ≤
mN∑

m=m0

|bm(h)| = C9,

where l0 denotes the smallest natural number such that 2l0 ≥ m0. It follows

that ∣∣∣∣∣
N∑
k=0

B(k)F1(k)

∣∣∣∣∣ ≤ 1

2π

∫ π

−π
|F̂1(ω)|

∣∣∣∣∣
N∑
k=0

B(k) eikω

∣∣∣∣∣ dω

≤ C9
1

2π

∫ π

−π
|F̂1(ω)| dω

= C10.
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Consequently, we have∣∣∣∣∣
N∑
k=0

f(k)h(k)−
N∑
k=0

F1(k)G1(k)

∣∣∣∣∣ ≤ C7 + C8 + C10 = C11, (24)

independently of N .

For N ∈ N we have

N∑
k=0

F1(k)G1(k) =

N∑
k=0

( ∞∑
n=n0

an(f)ξ(1)
n (k)

)( ∞∑
m=m0

bm(h)h(1)
m (k)

)

= an0
(f)bm0

(h)

N∑
k=0

ξ(1)
n0

(k)h(1)
m0

(k)

+

N∑
k=0

an0(f)ξ(1)
n0

(k)

( ∞∑
m=m0+1

bm(h)h(1)
m (k)

)

+

N∑
k=0

bm0(h)h(1)
m0

(k)

( ∞∑
n=n0+1

an(f)ξ(1)
n (k)

)

+

N∑
k=0

( ∞∑
n=n0+1

an(f)ξ(1)
n (k)

)( ∞∑
m=m0+1

bm(h)h(1)
m (k)

)
.

(25)

For the second term we obtain∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

an0
(f)ξ(1)

n0
(k)

( ∞∑
m=m0+1

bm(h)h(1)
m (k)

)∣∣∣∣∣∣
≤ |an0

(f)|
C12n0+1

∞∑
m=m0+1

|bm(h)|
C22m+1

∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

φ(1)
n0

(k)g(1)
m (k)

∣∣∣∣∣∣
≤ C3|an0(f)|
C1C22n0+1

∞∑
m=m0+1

|bm(h)|
2m+1

= C12. (26)
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For the third term we obtain∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

bm0
(f)h(1)

m0
(k)

( ∞∑
n=n0+1

an(f)ξ(1)
n (k)

)∣∣∣∣∣∣
≤ |bm0

(h)|
C22m0+1

∞∑
n=n0+1

|an(f)|
C12n+1

∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

φ(1)
n (k)g(1)

m0
(k)

∣∣∣∣∣∣
≤ C3|bm0(h)|
C1C22m0+1

∞∑
n=n0+1

|an(f)|
2n+1

≤ C3|bm0(h)|
C1C22m0+1

( ∞∑
n=n0+1

|an(f)|2
) 1

2
( ∞∑
n=n0+1

1

22n+2

) 1
2

= C13. (27)

For the fourth term we have

Nr(n0,m0)∑
k=0

( ∞∑
n=n0+1

an(f)ξ(1)
n (k)

)( ∞∑
m=m0+1

bm(h)h(1)
m (k)

)

=

∞∑
n=n0+1

an(f)

∞∑
m=m0+1

bm(h)

Nr(n0,m0)∑
k=0

ξ(1)
n (k)h(1)

m (k)

=

∞∑
n=n0+1

an(f)

2n+1C1

∞∑
m=m0+1

bm(h)

2n+1 C2

Nr(n0,m0)∑
k=0

φ(1)
n (k)g(1)

m (k).

It follows that∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

( ∞∑
n=n0+1

an(f)ξ(1)
n (k)

)( ∞∑
m=m0+1

bm(h)h(1)
m (k)

)∣∣∣∣∣∣
≤

∞∑
n=n0+1

|an(f)|
2n+1C1

∞∑
m=m0+1

|bm(h)|
2m+1C2

∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

φ(1)
n (k)g(1)

m (k)

∣∣∣∣∣∣
≤ C3

∞∑
n=n0+1

|an(f)|
2n+1C1

∞∑
m=m0+1

|bm(h)|
2m+1C2

≤ C3

C1C2

( ∞∑
n=n0+1

|an(f)|2
) 1

2
( ∞∑
n=n0+1

1

22n+2

) 1
2

( ∞∑
m=m0+1

|bm(h)|2
) 1

2
( ∞∑
m=m0+1

1

22n+2

) 1
2

≤ C14, (28)
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where we used Lemma 1 in the second inequality. Combining (24) and (25)–(28),

we see that∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

f(k)h(k)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣an0

(f)bm0
(h)

Nr(n0,m0)∑
k=0

ξ(1)
n0

(k)h(1)
m0

(k)

∣∣∣∣∣∣− C11 − C12 − C13 − C14.

Now since∣∣∣∣∣∣an0
(f)bm0

(h)

Nr(n0,m0)∑
k=0

ξ(1)
n0

(k)h(1)
m0

(k)

∣∣∣∣∣∣ =
|an0(f)bm0(h)|
C1C22n0+m0+2

∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

φn0
(k)gm0

(k)

∣∣∣∣∣∣ ,
where |an0

(f)bm0
(h)| > 0, and

lim sup
r→∞

∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

φn0(k)gm0(k)

∣∣∣∣∣∣ =∞,

according to Lemma 1, it follows that

lim sup
r→∞

∣∣∣∣∣∣an0
(f)bm0

(h)

Nr(n0,m0)∑
k=0

ξ(1)
n0

(k)h(1)
m0

(k)

∣∣∣∣∣∣ =∞,

and consequently that

lim sup
r→∞

∣∣∣∣∣∣
Nr(n0,m0)∑

k=0

f(k)h(k)

∣∣∣∣∣∣ =∞.

Since h(k) = 0 for k < 0, this implies that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)h(k)

∣∣∣∣∣ =∞.

To complete the proof, we consider the space Dsys = Q−1RQDsys1, where

R : f 7→ f(− · ) denotes the time-reversal operator. Dsys is an infinite dimen-

sional closed subspace of T and we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (−k)

∣∣∣∣∣ =∞

for all f ∈ Dsig, f 6≡ 0, and all T ∈ Dsys, T 6≡ 0.
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Proof of Corollary 1. From Theorem 1 we know that there exist an infinite di-

mensional closed subspace Dsig ⊂ PW1
π and an infinite dimensional closed sub-

space Dsys ⊂ T , such that for all f ∈ Dsig, f 6≡ 0, and all T ∈ Dsys, T 6≡ 0, we

have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (−k)

∣∣∣∣∣ =∞. (29)

Let t ∈ R be arbitrary but fixed, and consider the operator U : L∞[−π, π] →

L∞[−π, π], ĥT 7→ ĥT e−i · t. U is a bounded, linear, and invertible operator with

bounded inverse. Hence, Dsys2 = Q−1UQDsys is an infinite dimensional closed

subspace of T . Let f ∈ Dsig and T2 ∈ Dsys2 be arbitrary but fixed. Further, let

ĥT = U−1ĥT2
. For N ∈ N we have

N∑
k=−N

f(k)hT2
(t− k) =

1

2π

∫ π

−π
ĥT2

(ω) eiωt
N∑

k=−N

f(k) e−iωk dω

=
1

2π

∫ π

−π
(U−1ĥT2)(ω)

N∑
k=−N

f(k) e−iωk dω

=
1

2π

∫ π

−π
ĥT (ω)

N∑
k=−N

f(k) e−iωk dω

=

N∑
k=−N

f(k)hT (−k).

Since T ∈ Dsys, it follows from (29) that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT2
(t− k)

∣∣∣∣∣ =∞.
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