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1. Introduction

All microscopic models of hydrodynamics are constructed in such a
way that a family of equilibrium (Gibbs) states is associated to the
conservation laws of the underlying system; there is a one-to-one cor-
respondence between the parameters of the Gibbs measures and the
expected values of the conserved quantities. In theoretical physics the
derivation of the macroscopic (Euler) equations is usually based on the
principle of local equilibrium. This extremely strong form of the ergodic
hypothesis allows us to evaluate the macroscopic fluxes as the expecta-
tion of the microscopic currents with respect to an equilibrium distri-
bution with parameters depending on space and time. A mathematical
manifestation of this approach requires an identification of translation
invariant stationary measures of the infinitely extended system as weak lim-
its of superpositions of equilibrium Gibbs states with different parameters.
As a consequence, the skeleton (lattice approximation) of the macro-
scopic equations can be recognized in the fairly complex expression of
the microscopic dynamics. The next step consists in the treatment of
the remainders, and from this point techniques of PDE theory apply.

The principal microscopic models are coming from statistical me-
chanics. The strong ergodic hypothesis for such deterministic systems
is certainly one of the hardest unsolved problems of mathematics, there-
fore apart from some exactly solvable models as hard rods or the har-
monic chain [4,10], time dependent random driving effects are postu-
lated to ensure the proper ergodic behavior of the microscopic system.

Hydrodynamic limit means that the space and time are simultaneously
rescaled, see C. Morrey [22] for a first discussion. More precisely, if
0 < ε → 0 denotes the value of the microscopic unit of space at the
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macroscopic level, then the microscopic time t is speeded up as t = τ/ε
if the scaling rule is hyperbolic, that is of Euler type, while t = τ/ε2

in the diffusive case; here τ denotes the macroscopic time. Of course,
the scaling rule is determined by the underlying microscopic model;
the hyperbolic scaling limit of a diffusive system is trivial. Diffusive
systems exhibit a parabolic structure, thus energy or entropy inequalities
can be used to pass to the limiting parabolic equations see [11] and [19].
Due to the pioneering work [19] by Guo - Papanicolau - Varadhan, and
[29] by S. R. S. Varadhan, the theory of diffusive scaling limit is more
or less complete.

The case of hyperbolic models is much more difficult because the
system has simply not enough time to develop local equilibrium. At
a technical level we see that the viscosity, which has been created by
postulating random effects, does vanish as the scaling parameter ε goes
to 0 . Consequently in contrast to diffusive models, there is no hope to
get compactness in a standard way. Moreover, the macroscopic equations
are also hyperbolic, thus shock waves may appear in a finite time. That
is why a synthesis of probabilistic and PDE methods is needed here;
a stochastic theory of compensated compactness seems to be the only ef-
fective tool in the case of systems of conservation laws. This approach is
based on the evaluation of entropy production for Lax entropy pairs (ad-
ditional conservation laws) of the macroscopic (Euler) equations; the
first crucial step consists in the derivation of the celebrated Div-Curl
Lemma. Since the strong ergodic hypothesis excludes the existence of
nontrivial conservative quantities, the dynamics of a general Lax en-
tropy exhibits an extremely turbulent, non-gradient behavior. We have
to assume that the artificial viscosity of the model is strong enough to
control these fluctuations. A logarithmic Sobolev inequality is our main
tool at this step of the argument.

In this draft we are going to discuss some related open problems as
the uniqueness of the scaling limit, the necessary strength of the arti-
ficial viscosity, and the derivation of the compressible Euler equations
with viscosity.

2. An Asymmetric System of First Order

Let V ∈ C2(R) denote a not necessarily symmetric potential such
that V ′′ is bounded and V (y)/|y| → +∞ as y → ±∞ . The infinite
system

η̇k =
1

2

(
V ′(ηk+1)− V ′(ηk−1)

)
, ηk ∈ R , k ∈ Z (2.1)
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is a direct lattice approximation to the conservation law ∂ty = ∂xV
′(y) .

Random perturbations of this model were studied in [15], see also [3].
It is easy to see that this system is uniquely solved in the space of con-
figurations with a sub-exponential growth. Hyperbolic scaling means
that we are interested in the asymptotic behavior of yε(t, x) := ηk(t/ε)
if |x − εk| < ε/2 as 0 < ε → 0 . Since the current of ηk is just
(−1/2)(V ′(ηk) + V ′(ηk−1)) , it is possible to imagine that yε converges
is a weak sense to a solution to ∂ty = ∂xV

′(y) , but the situation is
much more complex.

Indeed, (2.1) is not a correct approximation procedure because it
does not produce any effect of viscosity, therefore it is not easy to
believe in its convergence; the principles of statistical physics pro-
vide a deeper insight into this issue. First of all, observe that there
is another conservation law, namely that of H =

∑
V (ηk) with flux

(−1/2) (V ′(ηk−1)V
′(ηk)) as

∂tV (ηk) =
1

2

(
V ′(ηk)V

′(ηk+1)− V ′(ηk−1)V ′(ηk)
)
,

therefore the hydrodynamic limit should result in a couple of macro-
scopic equations. Let us remark that (2.1) can be interpreted as a
Hamiltonian dynamics, see [3]. Indeed, introducing pk := η2k and
rk := η2k+1 for all k ∈ Z , (2.1) turns into

ṗk =
1

2

(
V ′(rk)− V ′(rk−1)

)
, ṙk =

1

2

(
V ′(pk+1)− V ′(pk)

)
;

the associated Hamiltonian is just H = (1/2)
∑

(V (pk) + V (rk)) .
Due to the existence of two conservation laws, for any chemical po-

tential γ ∈ R and inverse temperature β > 0 , the process (2.1) has
a translation invariant stationary product measure λβ,γ with marginal
Lebesque densities

fβ,γ(y) := exp (γy − βV (y)− F (β, γ)) ,

F (β, γ) := log

∫ ∞
−∞

exp (γy − βV (y)) dy .

By a direct computation we obtain that

ρ :=

∫
ηk dλβ,γ = F ′γ(β, γ) , χ :=

∫
V (ηk) dλβ,γ = −F ′β(β, γ) ,

and J :=
∫
V ′(ηk) dλβ,γ = γ/β . In view of the principle of local equi-

librium, we expect ∂tρ = ∂xJ and ∂tχ = (1/2)∂xJ
2 as our couple of

macroscopic equations.



4 JÓZSEF FRITZ, TU BUDAPEST

To write J as a function of χ and ρ , we define the entropy function
S of the problem as

S(χ, ρ) := sup
β,γ
{γρ− βχ− F (β, γ) : γ ∈ R , β > 0} ,

whence by convex duality we get γ = S ′ρ(β, ρ) and β = −S ′χ(β, χ) .
Consequently the couple of macroscopic conservation laws reads as

∂tρ(t, x) = ∂xJ(χ, ρ) , ∂tχ(t, x) = (1/2)∂xJ
2(χ, ρ) ; (2.2)

where J(χ, ρ) = −S ′ρ(χ, ρ)/S ′χ(χ, ρ) . We see also that

∂tS(χ, ρ) = S ′ρ(χ, ρ)∂xJ(χ, ρ) + S ′χ(χ, ρ)J(χ, ρ)∂xJ(χ, ρ) = 0

along classical solutions, which means that S is a convex Lax entropy
with vanishing flux. This observation plays a role later on: in the presence
of viscosity the space integral of S happens to be a decreasing function of
time.

Deterministic artificial viscosity: We have several choices, perhaps
the simplest one reads as

η̇k =
1

2

(
V ′(ηk+1)− V ′(ηk−1)

)
+ σ (ηk+1 + ηk−1 − 2ηk) , (2.3)

where σ > 0 is a large constant. This system does not admit locally
absolutely continuous stationary states, the temperature is fixed at
zero. If V is convex then the effect of viscosity is demonstrated by the
following inequality:

∂tH =
1

2

∑
k∈Z

V ′(ηk) (V ′(ηk+1 − V ′(ηk−1))

+ σ
∑
k∈Z

V ′(ηk) (ηk+1 + ηk−1 − 2ηk)

= −σ
∑
k∈Z

(ηk+1 − ηk) (V ′(ηk+1 − V ′(ηk)) ≤ 0 ,

which is also an effective a priori bound.
Since the conservation law of H is violated by the viscosity, the only

macroscopic equation reads as ∂ty = (1/2)∂xV
′(y) , its derivation follows

the classical argument of Olga Oleinik, see e.g. [20]. For example, with
some intermediate values θ we have

η̇k + 2σηk = (σ + V ′′(θk+1)/2)ηk+1 + (σ − V ′′(θk−1)/2)ηk−1 ,

thus multiplying both sides by e2σt , we can estimate sup e2σtηk , i.e.
sup ηk , and also inf ηk by means of the Grönwall inequality, at lest if
0 < V ′′ < σ .
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The continuous dependence on initial values can be proven in a sim-
ilar way, we get∑

|k|<r

|ηk(t)− η̄k(t)| ≤
∑

|k|<r+2σt

|ηk(0)− η̄k(0)|

for two solutions. Oleinik’s famous entropy inequality follows from the
expansion

ξ̇k + 2σξk = (σ + V ′′(ηk)/2)ξk+1 − (1/4)V ′′′(θk+1)ξ
2
k+1

+ (σ − V ′′(ηk)/2)ξk−1 − (1/4)V ′′′(θk−1)ξ
2
k−1

for ξk := ηk+1 − ηk−1 , where V ′′′ > 0 is a relevant condition.
Suppose that the initial configuration is bounded, then the summary

of these computations yields L1 convergence of the scaled process to the
unique entropy solution to the macroscopic equation. In contrast to the
stochastic model of [15], it is not necessary to assume that the microscopic
viscosity σ = σ(ε) goes to infinity; it must be a large constant depending
on the initial condition. Concerning the unbounded case we claim that it
is sufficient to assume that σ → +∞ in a moderate way, εσ2(ε)→ +∞
is not required. A stochastic theory is to be discussed later.

The case of energy: There are not too many choices. The viscid
perturbation

η̇k =
1

2

(
V ′(ηk+1)− V ′(ηk−1)

)
(2.4)

+ (σ/V ′(ηk)) (V ′(ηk+1) + V ′(ηk−1)− 2V ′(ηk))

implies ∂tH = 0 and

∂t
∑
k∈Z

ηk = −σ
∑
k∈Z

(V ′(ηk+1)− V ′(ηk))2

V ′2(ηk)

as formal identities. The singular case of V ′(ηk) can be excluded by
assuming V ′(y) < 0 if y > 0 and V (y)→ +∞ as y → 0 ; lattice models
of gas dynamics are driven by such interactions. It is possible to show
that ηk(t) > 0 remains is force if ηk(0) > 0 for all k ∈ Z and H < +∞
at time zero.

This version seems to be simpler then the Hamiltonian model of
gas dynamics, but there are serious difficulties also here. First of all,
V ′′ is the order of the Lipschitz factor of the right hand side of (2.4),
which might be much bigger than V , thus it is not controlled by the
energy bound. As a consequence, we can not prove the convergence of
partial dynamics when the size of the system goes to infinity. Of course,
the derivation of the single macroscopic equation ∂tχ = (1/2)∂xW (χ) ,



6 JÓZSEF FRITZ, TU BUDAPEST

where W (χ) := V ′2(y) if V (y) = χ , does not presuppose the existence
of the infinitely extended dynamics, just it seems to be even harder.

3. The Anharmonic Chain

It is simple microscopic model of one-dimensional elasticity. The Hamil-
tonian of coupled oscillators of unit mass on Z reads as

H(ω) :=
∑
k∈Z

Hk(ω) , Hk(ω) := p2k/2 + V (qk+1 − qk) ,

where ω = {(pk, qk) : k ∈ Z} denotes a configuration of the infinite
system, pk, qk ∈ R are the momentum (velocity) and the coordinate of
the oscillator at site k ∈ Z ; the interaction potential V is the same
as it was in the previous section. In terms of the deformation (strain)
variables rk := qk+1 − qk , the equations of motion read as

ṗk = V ′(rk)− V ′(rk−1) and ṙk = pk+1 − pk for k ∈ Z ; (3.1)

in this formulation V needs not be symmetric. The solutions can be
well approximated by the solutions to finite subsystems when the size
of the finite system goes to infinity, see e.g. [16] with further refer-
ences. The basic questions on (3.1) are more or less the same as those
on (2.1), the right way of its regularization is suggested by the small
viscosity approach. Deterministic versions might also be interesting,
but the theory of hydrodynamic limits goes beyond numerical analysis
as discussed below.

Stationary states: (3.1) reads as a lattice system of conservation
laws for the total momentum P :=

∑
pk , and for the total deforma-

tion R :=
∑
rk , respectively: ∂tP = ∂tR = 0 are formal identities.

Since ∂tHk(ω) = pk+1V
′(rk) − pkV

′(rk−1) is a difference of currents,
total energy H is also preserved by the dynamics, therefore we expect to
have three hydrodynamic equations: one for momentum, one for the
deformation, and a third one for energy. In view of the principle of lo-
cal equilibrium, the macroscopic fluxes of these conservative quantities
are to be calculated by means of the stationary states of the dynamics.
These are characterized by

∫
L0ϕdλ = 0 for smooth local functions ϕ

of a finite number of variables, where

L0ϕ :=
∑
k∈Z

(
(V ′(rk)− V ′(rk−1))

∂ϕ

∂pk
+ (pk+1 − pk)

∂ϕ

∂rk

)
denotes the associated Liouville operator. Also by means of the finite
volume approximation it is easy to check that, associated with the
classical conservation laws, we have a three-parameter family λβ,π,γ of
translation invariant stationary product measures. As before, β > 0
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is the inverse temperature, γ ∈ R is a chemical potential and π ∈ R
denotes the mean velocity. Under λβ,π,γ the marginal Lebesgue density
of any couple (pk, rk) ∼ (y, z) reads as exp(γz − βI(y, z|π)− F (β, γ)) ,
where I(y, y|π) := (y − π)2/2 + V (z) ; the normalization

F (β, γ) := log

∫
R2

exp (γz − βI(y, z|π)) dy dz

is sometimes referred to as the free energy. It is easy to see that L0 is
antisymmetric with respect to any λβ,π,γ .

The compressible Euler equations: The expected values (χ, π, ρ)
of the conservative quantities Hk , pk and rk with respect to λβ,π,γ read
as χ := I+π2/2 , where I :=

∫
Ik dλβ,π,γ = −F ′β(β, γ) is the equilibrium

mean of the internal energy Ik := I(pk, rk|π) at site k , π :=
∫
pk dλβ,π,γ ,

while ρ :=
∫
rk dλβ,π,γ = F ′γ(β, γ) is the mean deformation. Integrating

by parts we obtain
∫
V ′(rk) dλβ,π,γ = γ/β for the equilibrium expecta-

tion of V ′ . The parameters β and γ can be expressed in terms of the
thermodynamical entropy

S(I, ρ) := sup {γρ− βI− F (β, γ) : β > 0, γ ∈ R}

as follows. Since S is the convex conjugate of F , we have γ = S ′ρ(I, ρ)
and β = −S ′I(I, ρ) if v = F ′γ(β, γ) and I = −F ′β(β, γ) .

We are interested in the asymptotic behavior of the empirical pro-
cesses πε(t, x) := pk(t/ε) , ρε(t, x) := rk(t/ε) and χε(t, x) := Hk(ω(t/ε))
if |εk−x| < ε/2 , as 0 < ε→ 0 . Of course it is assumed that at time zero
these processes converge, at least in a weak sense to the corresponding
initial values of the hydrodynamic equations. In view of the physical
principle of local equilibrium, the macroscopic currents of the conser-
vative quantities should be calculated by means of a product measure
of type λβ,π,γ with parameters depending on time and space. In this
framework J := γ/β =

∫
V ′(rk) dλβ,π,γ is the mean current of mo-

mentum, and πJ =
∫
pkV

′(rk−1) dλβ,π,γ is the mean current of energy,
consequently a formal calculation results in the triplet of compressible
Euler equations:

∂tπ = ∂xJ(I, ρ) , ∂tρ = ∂xπ and ∂tχ = ∂x(πJ(I, ρ)) , (3.2)

where J(I, ρ) := γ/β = −S ′ρ(I, ρ)/S ′I(I, ρ) and I = χ − π2/2 , see e.g.
[7] or [14]. Therefore ∂tI = J(I, ρ)∂xπ and ∂tS(I, ρ) = 0 along classical
solutions, but we have to keep in mind that this system develops shock
waves in a finite time.



8 JÓZSEF FRITZ, TU BUDAPEST

4. Stochastic Perturbations

The first step of the derivation of the macroscopic conservation laws
consists in the evaluation of the microscopic flux as its canonical ex-
pectation with respect to an equilibrium Gibbs state. This crucial step
is based on the strong ergodic hypothesis, which means an identification
of all translation invariant stationary measures as equilibrium Gibbs
states. That is why the dynamics of the anharmonic chain should be
regularized by a well chosen noise. There are several plausible tricks,
we are going to consider Markov processes generated by an operator
L = L0 + σ G , where L0 is the Liouville operator, while the Markov
generator G is symmetric in equilibrium. Here σ > 0 may depend on
the scaling parameter ε > 0 , and εσ(ε) is interpreted as the coefficient
of macroscopic viscosity. Following the vanishing viscosity approach of
PDE theory, we are assuming that εσ(ε)→ 0 as ε→ 0 , then the effect
of the symmetric component σG diminishes in the limit. In a regime of
shocks an additional technical condition: εσ2(ε)→ +∞ is also needed.

Block averages: The first step of a proof is always the substitu-
tion of the currents by their macroscopic estimators. This is due to
the strong ergodicity of the dynamics, and it is carried out in terms
of block averages. For any sequence {ξk} indexed by Z we write
ξ̄l,k := (1/l)(ξk−l+1 + ξk−l+2 + ... + ξk) . For example, V̄ ′l,k is the se-
quence of arithmetic means for {V ′(rk)} ; the symbols p̄l,k , p̄l,k , r̄l,k
H̄l,k are defined in a similar way, and so on. In case of the Euler equa-
tions we substitute V̄ ′l,k by J(Īl,k, r̄l,k) , where Īl,k = H̄l,k − (1/2)(p̄l,k)

2 ,

while the block averages of pkV
′(rk−1) are estimated by p̄l,k J(Īl,k, r̄l,k) .

Depending on the problem, the empirical processes may also be de-
fined in terms of averages of block size l = l(ε) as π̄ε(t, x) := p̄l,k(t/ε)
if |εk − x| < ε/2 . Because of technical reasons, in a regime of shocks
the ”flat” arithmetic means ξ̄l,k has to be replaced by the more smooth

”triangular” averages ξ̂l,k , see a bit later.

Random exchange of velocities: This is a weak but still effective
conservative noise: at neighboring sites we simply do an exchange of
the two velocities in an independent way. More precisely, the generator
G = Gep of this exchange mechanism is acting on local functions as

Gepϕ(ω) =
∑
k∈Z

(
ϕ(ωk,k+1)− ϕ(ω)

)
, (4.1)

where ωk,k+1 denotes the configuration obtained from ω = {(pj, rj)} by
exchanging pk and pk+1 , the rest of ω remains unchanged, see [13]. It
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is plain that P =
∑
pk , R =

∑
rk and total energy H are formally

preserved by Gep , and the product measures λβ,π,γ are all stationary
states of the Markov process generated by L := L0 + σ Gep if σ > 0 .

The relative entropy S[µ|λ] of two probability measures is defined as
S :=

∫
log f dµ if µ � λ , f = dµ/dλ and the integral exists; S[µ|λ] =

+∞ otherwise. Let µn denote the joint distribution of the variables
{(pk, rk) : |k| ≤ n} with respect to µ , as a reference measure we choose
λ := λ1,0,0 , and fn := dµn/dλ . Following [13] we see that if µ is a
translation invariant stationary measure, and S[µn|λ] = O(n) then µ is a
superposition of our product measures {λβ,π,γ} , see also [3].

A theory on the preservation of local equilibrium has been initiated
by H.-T. Yau [30] as follows. At a level ε = 1/n , n ∈ N of scaling let µt,n
denotes the true distribution of the variables {(pk(tn), rk(tn)) : |k| ≤
n} . Since our noise is not strong enough to control boundary effects,
we have to assume that our configurations are periodic with period n .
The basic idea of his strategy is to fit a product measure λt,n = λβ,π,γ
with space and time dependent parameters to µt,n in such a way that
S[µt,n|λt,n] = o(n) as long as possible. This is a condition at t = 0 ,
and assuming that the initial condition of (3.2) determines a classical
solutions on the interval [0, T ) , the claim can be proven for t < T by
defining the parameters of λt,n as they are predicted by the compressible
Euler equations. This construction implies immediately the convergence
of the empirical processes to the prescribed smooth solution of the Euler
equations on [0, T ) . In the temporal derivative of S the substitution of
the microscopic currents by their canonical equilibrium expectations is
done at the level of large block averages, but there are several other
steps where the continuous differentiability of the macroscopic solution
is exhausted. Since ∂tS is one of the leading terms of ∂tS[µt,n|λt,n] ,
the identity ∂tS(I, ρ) = 0 is very important, too. Regularization by
exchange works in much the same way also in case of (2.1), we obtain
by scaling the corresponding couple (2.2) of hyperbolic equations.

Let us remark that in a periodic setting the identification of the
translation invariant stationary states is easier than in the general case.
Indeed, we only have to describe those measures, which are obtained
as weak limits of space - time averages of periodic processes.

Physical viscosity with thermal noise: The Ginzburg-Landau type
perturbation of velocities:

dpk = (V ′(rk)− V ′(rk−1)) dt+ σ (pk+1 + pk−1 − 2pk) dt

+
√

2σ (dwk − dwk−1) , drk = (pk+1 − pk) dt , k ∈ Z ,
(4.2)



10 JÓZSEF FRITZ, TU BUDAPEST

where σ > 0 is a given constant and {wk : k ∈ Z} is a family of in-
dependent Wiener processes, maintains a thermal equilibrium at unit
temperature and violates the law of energy conservation at the same
time. Therefore the set of our stationary product measures reduces
to {λπ,γ} := {λ1,π,γ} ; the strong ergodic hypothesis holds true in this
setting, too. Let F (γ) := F (1, γ) , then

∫
V ′(rk) dλπ,γ = γ = S ′(ρ)

if
∫
rk dλπ,γ = ρ = F ′(γ) , where S(ρ) := sup {γρ − F (γ) : γ ∈ R} .

Consequently (3.2) turns into the nonlinear sound equation of elastody-
namics:

∂tπ = ∂xS
′(ρ) and ∂tρ = ∂xπ , that is ∂2t ρ = ∂2xS

′(ρ) . (4.3)

In a smooth regime the derivation of this p-system follows the relative
entropy argument of Yau [30], cf. the paragraph above and [14]; in this
case it is not necessary to assume that the configurations are periodic,
other conditions are not changed. The thermodynamic entropy now
reads as S̃ := π2/2 + S(ρ) . Of course S̃ is a convex Lax entropy as
∂tS̃ = ∂x(πS

′(ρ)) , thus we have ∂t
∫
S̃ dx = 0 along smooth solutions.

At the end of the paper we are going to discuss two other models,
which are also driven by Wiener processes, and the second one preserves
the classical conservation laws including that of total energy, too.

HDL in a regime of shocks: The hyperbolic scaling limit of attrac-
tive models can be determined even in the presence of shocks, see F.
Rezakhanlou [24] for a general argument. In fact, his effective coupling
techniques reduce the problem to the Kruzkov entropy condition. If V is
convex then

dηk =
1

2

(
V ′(ηk+1)− V ′(ηk−1)

)
dt

+ σ (V ′(ηk+1) + V ′(ηk−1)− 2V ′(ηk)) dt+
√

2σ (dwk − dwk−1)

defines an attractive model, see [15] for its hyperbolic scaling limit.
Two-component systems as the anharmonic chain and its random

perturbations are certainly not attractive, compensated compactness
seems to be the only tool we can use. The microscopic dynamics can not
admit non-classical conservation laws because it should be ergodic in
the strong sense, therefore a nontrivial Lax entropy is not conserved by
the microscopic dynamics. In general, the flux of a Lax entropy exhibits
a non-gradient behavior, and the standard spectral gap estimates S. R. S.
Varadhan [29] are not sufficient to bound the remainders, a logarithmic
Sobolev inequality is needed. This effective LSI is due to the strong
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artificial viscosity of our next model:

dpk = (V ′(rk)− V ′(rk−1)) dt+ σ(ε) (pk+1 + pk−1 − 2pk) dt

+
√

2σ(ε) (dwk − dwk−1)
and

drk = (pk+1 − pk) dt+ σ(ε) (V ′(rk+1) + V ′(rk−1)− 2V ′(rk)) dt

+
√

2σ(ε) (dw̃k+1 − dw̃k) ,

where {wk : k ∈ Z} and {w̃k : k ∈ Z} are independent families of
independent Wiener processes. Of course, the macroscopic viscosity
εσ(ε) vanishes as ε → 0 , but we also need εσ2(ε) → +∞ to suppress
extreme fluctuations of Lax entropies.

Just as in the case of (4.2), the same {λπ,γ : π, γ ∈ R} is the family
of stationary product measures, and the strong ergodic hypothesis also
holds true. Therefore again (4.3) is expected to govern the macroscopic
behavior of the system under hyperbolic scaling. Since we are not able to
prove the uniqueness of the limit in a regime of shocks, we only assume
that S[µ0,ε,n|λ0,0] = O(n) , where µ0,ε,n denotes the initial distribution
in the box [−n, n] . This bound remains in force also for the evolved
measure, and the dominant part of −∂tS is a Dirichlet form D ≥ 0 .

The evaluation of the Lax entropy production requires a modification
of the empirical processes. Instead of the standard arithmetic means,
the more smooth averages

ξ̂l,k :=
1

l2

l∑
j=−l

(l − |j|) ξk+j

are used in the definition of π̂ε and ρ̂ε . The computation of the micro-
scopic currents is based on the following sharp a priori bound:∑
|k|<n

∫ t

0

∫ (
V̄ ′l,k − S ′(r̄l,k)

)2
dµs,ε ds ≤ C

(
nt

l
+
l2
√
n2 + σ(ε)t

σ(ε)

)
.

This is a consequence of our bound on D via the associated logarithmic
Sobolev inequality, and it is really useful if l = l(ε) = o(σ(ε)) , while
σ(ε) = o(εl3(ε)) .

Now we are in a position to extend the results of J. W. Shearer [27]
and Serre - Shearer [26] on compensated compactness to our stochastic
model, see [18]. Since the genuine nonlinearity of (4.3) is a keyword of
the proof, we have to assume that even V ′ is convex, or V is symmetric
and zero is the only root of V ′′′ . Let us remark that the in case of the
creation - annihilation model of our paper [1], the action of LSI we have
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there should be supplemented by an additional tool of PDE theory:
the method of relaxation schemes.

Local behavior of total variation: The most striking unsolved prob-
lem of this theory of hyperbolic scaling limits is certainly the unique-
ness of the hydrodynamic limit in the case of two conservation laws as
(4.3), say. The more or less general results of A. Bressan [5] on the
uniqueness of the Cauchy problem for one - dimensional systems of
conservation laws presuppose that a sophisticated Oleinik type entropy
condition holds true. Unfortunately, our a priori bounds on the micro-
scopic dynamics usually read as expectations of temporal integrals of
spatial sums. Remember that hyperbolic scaling of the exceptional at-
tractive models results in a single conservation law, in which case the
question of uniqueness is much easier.

In some cases local bounds on the total variation imply the unique-
ness of the Cauchy problem, let us discuss a bit this issue. The total
variation of an empirical process ŷε(t, x) := η̂l,k(t/ε) , |εk−x| < ε/2 on
(−a, a) reads as

Tv(ŷε, t, a) :=
∑
ε|k|<a

|η̂l,k+1 − η̂l,k| =
1

l

∑
ε|k|<a

|η̄l,k+l − η̄l,k| .

Observe that η̄l,k+l − η̄l,k = l−1/2(Nk + δk
√
l) , where Nk is a centered

and normalized sum of 2l variables, while δk is the difference of the
mean values. Suppose now that the underlying distribution of {ηk} is
a product (local equilibrium) measure with regularly varying parame-
ters, that is δk ≈ εl when ε→ 0 , and the variances are strictly positive
and bounded. Since each Nk is asymptotically normal, we see three
possibilities. Tv(ηε, t, a) explodes if εl3/2 → 0 as ε → 0 because aver-
ages over small blocks are rapidly fluctuating. If εl3/2 → +∞ then our
blocks are too large, thus Tv(ηε, t, a)→ 0 is expected in this case. Con-
sequently l = l(ε) ≈ ε−2/3 is the only choice when the total variation
behaves in a standard way.

Of course, it is rather exceptional that the evolved process is so
close to local equilibrium that these considerations really apply. Any-
way, to get a bound on the total variation, very large blocks of size
l = l(ε) � ε−2/3 should be considered. Since l(ε) � σ(ε) when com-
pensated compactness is used, in a regime of shocks the coefficient of
artificial viscosity must be as big as σ(ε)� ε−2/3 ; otherwise there is no
hope to bound total variation. Let us remark that in PDE theory the
Riemann invariants are examined in this context, and at the microscopic
level this issue is fairly involved.
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5. Macroscopic Viscosity

Compensated compactness does not work in the case of three con-
servation laws, therefore it might be interesting to study microscopic
systems with non - vanishing viscosity, see Chen - Dafermos [6] for
discussions.
The p-system of thermoelasticity: Due to its viscid term, the
system ∂tρ = ∂xπ and ∂tπ = ∂xS

′(ρ) + σ∂2t π , σ > 0 is not scaling
invariant; one of its microscopic version reads as

dpk = (V ′(rk)− V ′(rk−1)) dt+ (σ/ε) (pk+1 + pk−1 − 2pk) dt

+
√

2σ/ε (dwk − dwk−1) , ṙk = pk+1 − pk ,

where {wk} is the usual Wiener family, cf. (4.2). The limiting behavior
of this model can be described by a standard application of the relative
entropy argument. As before, we have to assume that the macroscopic
solution is smooth, but the configurations of the system need not be
periodic, see [14].

Perturbation of deformations: The physical motivation of the next
version is less convincing, but it might be more interesting from the
point of view of mathematics. Let us consider

drk = (pk+1 − pk) dt+ σ(ε) (V ′(rk+1) + V ′(rk−1)− 2V ′(rk)) dt

+
√

2σ/ε (dw̃k+1 − dw̃k) , ṗk = V ′(rk)− V ′(rk−1) ,

where σ is a positive constant, and {wk : k ∈ Z} is a family of standard
Wiener processes. Here we are luckier than in the previous case because
the artificial viscosity of the present model controls the differences of
the nonlinear V ′ variables. In fact, an entropy argument allows us
to extend the celebrated two - blocks estimate of Guo - Papanicolau
- Varadhan [19] to get strong compactness in L2 . We even have an
LSI, but it is not necessary for the derivation of ∂tπ = ∂tS

′(ρ) and
∂tρ = ∂xπ + σ ∂2xS

′(ρ) as the couple of macroscopic equations, see [12].
In view of the remarks above, it is reasonable to replace the inten-

sity σ/ε of microscopic viscosity by σ(ε) such that εσ(ε) → 0 but
εσ2(ε) → +∞ . Indeed, our fundamental a priori bound on V̄ ′ − S ′(r̄)
follows as before via LSI, thus we are in a position to launch compen-
sated compactness. Unfortunately some less crucial steps are not clear,
nevertheless we conjecture that (4.3) follows from this model even is the
presence of shocks.

The viscid Euler equations: The random exchange mechanism can
also be speeded up to get viscosity at the macroscopic level. This means
that we investigate the process with generator L := L0+(σ/ε)Gep , and
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the method of Yau results in the triplet ∂tρ = ∂xπ ,

∂tπ = ∂xJ(I, ρ)+σ ∂2xπ , ∂tχ = ∂x(πJ(I, ρ))+(σ/2) ∂2x(β
−1+π2) , (5.1)

where (1/2)(β−1 + π2) is the equilibrium mean of the kinetic energy,
and β = −S ′I(I, ρ) , cf. (3.2).

Energy preserving stochastic equations: Basile - Bernardin - Olla
[2] notice that the operators

Yk := (pk − pk+1) ∂/∂pk−1 + (pk+1 − pk−1) ∂/∂pk + (pk−1 − pk) ∂/∂pk+1

preserve both the total momentum and the kinetic energy of three consec-
utive sites, namely

Ykpk−1 + Ykpk + Ykpk+1 = 0 = Ykp
2
k−1 + Ykp

2
k + Ykp

2
k+1 .

Motivated by this simple fact, let us consider now the process generated
by L := L0 + σGch , where σ = σ(ε) > 0 and Gchϕ := (1/6)

∑
k∈Z Y

2
k ϕ .

It is easy to check that Gch is formally symmetric in each L2(λπ,γ) ,
thus L preserves the classical conservation laws P , R , and H . More-
over, each product measure λβ,π,γ is stationary under the stochastic
dynamics generated by L , but the converse statement is not so clear
for a first sight. The stochastic differential equations of motion read as
ṙk = pk+1 − pk and

dpk =
(
V ′(rk)− V ′(rk−1)

)
dt

+ (σ/6)(pk+2 + 2pk+1 + 2pk−1 + pk−2 − 6pk) dt

+
√
σ/3

(
(pk+1 − pk−1) dwk + (pk+2 − pk+1) dwk+1

)
+
√
σ/3 (pk−2 − pk−1) dwk−1 .

Observe now that by a direct calculation we get

6Gchpk = 2(pk+1 + pk−1 − 2pk) + (pk+2 + pk−2 − 2pk) ,

while

3Gchp
2
k = (pk+1 − pk−1)2 + pk(pk+1 + pk−1 − 2pk)

+ (pk+2 − pk+1)
2 + pk(pk+2 + pk+1 − 2pk)

+ (pk−1 − pk−2)2 + pk(pk−2 + pk−1 − 2pk)

= 2(p2k+1 + p2k−1 − 2p2k) + (p2k+2 + p2k−2 − 2p2k)

+ (pkpk+2 + pk−2pk − 2pk−1pk+1)

+ 2(pkpk+1 + pk−1pk − pk−2pk−1 − pk+1pk+2) .

Everywhere on the right hand sides above we see second differences,
thus L defines a small viscosity approximation to the anharmonic chain
if εσ(ε) → 0 as ε → 0 , which suggests that the triplet (3.2) ought to
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emerge from the hyperbolic scaling limit. However, if σ(ε) = σ/ε > 0
then second derivatives appear on the right hand sides of the macro-
scopic equations. Of course, the equation for ρ is not modified: ∂tρ =
∂xπ , while ∂tπ = ∂xJ(I, ρ) + σ ∂2xπ . The energy equation turns into
∂tχ = ∂x(πJ(I, ρ) + σ∂x(β

−1 + π2/2) , where β = −S ′I(I, ρ) . This is al-
most the same as (5.1), which is not a surprise: Gch defines an exchange
mechanism, too.

We must be careful about the statements outlined above. A rig-
orous proof of the strong ergodic hypothesis certainly requires some
additional work. The control of the stochastic integrals in the evo-
lution equation for energy seems to be more problematic because the
quadratic variation of the martingales Mk ,

dMk := pk
(
(pk+1−pk−1) dwk+(pk+2−pk+1) dwk+1+(pk−2−pk−1) dwk−1

)
is too large: terms as p2k(pk+1 − pk)

2 can not be bounded by means
of the energy - entropy inequality. Anyway, we have to assume that
fourth powers of the velocities have bounded expectations at time zero.
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