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Abstract

We consider elliptic PDE eigenvalue problems on a tensorized domain, discretized such
that the resulting matrix eigenvalue problem Ax � λx exhibits Kronecker product structure.
In particular, we are concerned with the case of high dimensions, where standard approaches
to the solution of matrix eigenvalue problems fail due to the exponentially growing degrees
of freedom. Recent work shows that this curse of dimensionality can in many cases be
addressed by approximating the desired solution vector x in a low-rank tensor format. In
this paper, we use the hierarchical Tucker decomposition to develop a low-rank variant of
LOBPCG, a classical preconditioned eigenvalue solver. We also show how the ALS and
MALS (DMRG) methods known from computational quantum physics can be adapted to
the hierarchical Tucker decomposition. Finally, a combination of ALS and MALS with
LOBPCG and with our low-rank variant is proposed. A number of numerical experiments
indicate that such combinations represent the methods of choice.

1 Introduction

This paper is concerned with the solution of matrix eigenvalue problems arising from the dis-
cretization of high-dimensional elliptic PDE eigenvalue problems. A typical example is given
by

�∆upξq � V pξqupξq � λupξq in Ω � Rd,
upξq � 0 on BΩ,

(1)

for a certain potential V : Ω Ñ R. In the case of a tensorized domain Ω, a standard discretization
by, e.g., finite differences leads to a matrix eigenvalue problem of the form

pAL �AV qx � λx, (2)

where AL and AV are the discretized Laplace operator and potential, respectively. If Ω is a
tensorized domain, such as Ω � r0, 1sd, and the potential can be written as

V pξq �
ş

j�1

V
p1q
j pξ1qV

p2q
j pξ2q � � �V

pdq
j pξdq
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then such a discretization results in highly structured matrices:

AL �
ḑ

i�1

I b � � � b Ilooooomooooon
d�i times

bA
piq
L b I b � � � b Ilooooomooooon

i�1 times

, (3)

AV �
ş

j�1

A
pdq
V,j b � � � bA

p2q
V,j bA

p1q
V,j , (4)

where �A
piq
L P Rni�ni is the finite-difference discretization of the 1D-Laplace operator and A

piq
V,j P

Rni�ni is a diagonal matrix with the sampled function V
piq
j pξiq on the diagonal. Note that

the eigenvector x in (2) has length n1n2 � � �nd and can thus be reshaped into a tensor X P
Rn1�n2�����nd . From this point of view, (2) becomes a linear operator eigenvalue problem on the
vector space of tensors.

In general, we aim at computing the smallest eigenvalue for a linear eigenvalue problem of
the form

ApX q � λX , (5)

where we view the matrix A as a linear operator A : Rn1�����nd Ñ Rn1�����nd . We assume that
A is symmetric and has a representation compatible with low-rank tensors, such as the sum of
Kronecker products from above. With increasing d, the number of entries in X grows exponen-
tially. This excludes the use of classical iterative methods [1, 6] already for moderate values of
d. During the last years, a number of concepts and algorithms have been developed to cope with
this curse of dimensionality. The underlying idea is to assume that X can be well approximated
in a low-rank tensor format, with significantly less degrees of freedom, and to construct a solver
that searches for such an approximation within the low-rank tensor format. Such methods have
been investigated intensively for the solution of eigenvalue problems in computational quantum
chemistry, including DMRG for matrix product states and tensor networks, see [30, 22] and the
references therein. A number of recent, more mathematically oriented papers illustrate how these
ideas can be adapted and transferred to other applications [3, 10, 12, 13, 14, 27]. In particular,
Oseledets and Khoromskij [27] discuss the use of LOBPCG to solve reduced eigenvalue problems
arising in DMRG (also called MALS). In this paper, we adapt MALS to the hierarchical Tucker
decomposition [8, 11] and propose a low-rank variant of LOBPCG [17]. This low-rank variant
can either be applied directly to the high-dimensional eigenvalue problem or used in combination
with MALS.

The rest of this paper is organized as follows. In Section 2, we briefly summarize the hier-
archical Tucker decomposition, which will serve as the low-rank tensor format throughout this
paper. Based on this decomposition, Section 3 introduces our low-rank variant of the LOBPCG
method. In Section 4, we introduce ALS and MALS in this setting and propose combinations
with LOBPCG and with our low-rank variant. Finally, a number of numerical experiments in
Section 5 show the effectiveness of such combinations.

2 Preliminaries

In the following, we provide a very brief description of the hierarchical Tucker decomposition
(HTD) and refer to [8, 20] for more details.

A tensor X P Rn1�n2�����nd has d different modes 1, . . . , d. Consider a splitting of these
modes into two disjoint sets: t1, . . . , du � tY s with t � tt1, . . . , tku and s � ts1, . . . , sd�ku. The
matricization with respect to this splitting is obtained by merging the first set of modes into row
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indices and the second set into column indices:

Xptq P Rpnt1
���ntk

q�pns1
���nsd�k

q with
�
Xptq

	
pit1 ,...,itk q,pis1 ,...,isd�k

q
:� Xi1,...,id

for any indices i1, . . . , id in the multi-index set I � t1, . . . , n1u � � � � � t1, . . . , ndu.
HTD employs a hierarchy of matricizations, motivated by the following nestedness property:

span
�
Xptq

�
� span

�
Xptrq bXptlq

�
for any t � tl Y tr with two disjoint sets tl, tr � t1, . . . , du. Given any bases Ut, Utl , Utr for the
column spaces of Xptq, Xptlq, Xptrq, this implies the existence of a so called transfer matrix Bt
such that

Ut � pUtr b UtlqBt, Bt P Rrtlrtr�rt , (6)

where rt, rtl , rtr denote the ranks of the corresponding matricizations. Alternatively, Bt can be
reshaped into a so called transfer tensor Bt of size rtl � rtr � rt.

Applying (6) recursively, until tl and tr become singletons, leads to the HTD. For example,
for d � 4, repeated application of (6) leads to the HTD

vecpX q � Xp1234q � pU34 b U12qB1234

U12 � pU2 b U1qB12

U34 � pU4 b U3qB34

ñ vecpX q � pU4 b U3 b U2 b U1qpB34 bB12qB1234. (7)

Such a (non-unique) recursive construction of HTD leads to a hierarchical splitting of the modes
1, . . . , d, which is represented as a binary tree T , the so called dimension tree, as follows: Each
node of T corresponds to a subset of t1, . . . , du, with the root node given by t1, . . . , du itself.
Each parent node is the disjoint union of its two children and each leaf node is a singleton, see
also Figure 1. Having prescribed a maximal rank rt for each node t P T , the set of hierarchical
Tucker tensors of hierarchical rank at most prtqtPT is defined as

H-Tucker
�
prtqtPT

�
�
!
X P Rn1�����nd : rank

�
Xptq

�
¤ rt for all t P T

)
. (8)

In [8], algorithms are described to compress a tensor (either given explicitly or in HTD) to a
tensor in HTD with prescribed hierarchical ranks. This operation is called low-rank truncation.

It is often convenient to illustrate tensor decompositions by means of tensor network diagrams
(also called Penrose diagrams), see Figure 1 for an example. Such a diagram represents a tensor
in terms of contractions of other smaller-order tensors. Each node in the diagram represents
a tensor and each edge represents a mode. An edge connecting two nodes corresponds to the
contraction of these tensors in the associated pair of modes.

HTD can also be used for the compression of a matrix A representing a linear operator
Rn1�����nd Ñ Rn1�����nd . For this purpose, the indices of an entry ai1,...,id;j1,...,jd are shuffled
such that rai1,j1;...;id,jd � ai1,...,id;j1,...,jd . After merging pairs of indices iµ, jµ, this corresponds to

a tensor rA P Rn2
1�����n

2
d , to which the HTD can be applied. Having a linear operator represented

in low-rank HTD allows the efficient application of this operator to low-rank HTD vectors. The
described embedding of a linear operator into a tensor is a common technique in the simulation
of quantum spin systems (see, e.g.,[28]) and was also proposed in [26] for the so called TT format.
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{1, 2, 3, 4}

Figure 1: Dimension tree and tensor network diagram for a fourth-order tensor in HTD (7).

Algorithm 1:
LOBPCG with block size 1.

Input: Functions for applying matrices A,B�1 to a vector;
starting vector x0 with }x0}2 � 1.

Output: Approximate smallest eigenpair pλmin, xq
λ0 � xx0, x0yA
p0 � 0
for k � 0, 1, . . . (until converged) do

rk � B�1pAxk � λkxkq
U �

�
xk, rk, pk

�
rA � UTAU , �M � UTU
Find eigenpair pλk�1, yq, with }y}2 � 1, for smallest

eigenvalue of matrix pencil rA� λ�M .
pk�1 � y2 � rk � y3 � pk
xk�1 � y1 � xk � pk�1

xk�1 Ð xk�1{}xk�1}2
end for
Return pλmin, xq � pλk�1, xk�1q.

Algorithm 2:
Tensor LOBPCG with low-rank truncation in HTD.

Input: Functions for applying A,B�1 to a tensor; func-
tion for evaluating xX ,YyA of two tensors X ,Y in HTD;
starting vector X0 in HTD with xX0,X0y � 1.

Output: Approximate smallest eigenpair pλmin,X q
λ0 � xX0,X0yA
P0 � 0 � X
for k � 0, 1, . . . (until converged) do

Rk � B�1pApXkq � λkXkq, Rk Ð T pRkq
U1 � Xk, U2 � Rk, U3 � PkrAij � xUi,UjyA, �Mij � xUi,Ujy
Find eigenpair pλk�1, yq, with }y}2 � 1, for smallest

eigenvalue of matrix pencil rA� λ�M .
Pk�1 � y2 �Rk�y3 �Pk Pk�1 Ð T pPk�1q
Xk�1 � y1 �Xk�Pk�1 Xk�1 Ð T pXk�1q

Xk�1 Ð Xk�1{
a
xXk�1,Xk�1y

end for
Return pλmin,X q � pλk�1,Xk�1q.

3 Locally optimal block preconditioned CG (LOBPCG)

In principle, any iterative method for solving linear systems or eigenvalue problems can be
combined with a low-rank tensor format by representing each iterate in this format, as proposed,
e.g., in [2, 10, 16, 19]. This significantly reduces the computational cost for all basic operations
(addition, scalar product, . . .) of the method and may lead to significant speedup. However, as
the rank usually grows rapidly with each iteration, repeated low-rank truncations of the iterates
are necessary. When convergence is slow (e.g., due to a poor choice of preconditioner), these
truncations may lead to significant perturbations of the iterates especially in the transient phase
of the method. These perturbations may or may not severely affect the convergence of the
method; the understanding of this phenomenon is still rather incomplete.

In the following, we discuss the combination of HTD with LOBPCG [17], an iterative method
for computing the smallest eigenvalue(s) of a symmetric matrix A. In contrast to standard Krylov
subspace methods, LOBPCG allows for the direct use of a preconditioner B. Algorithm 1
provides a summary of LOBPCG. For simplicity, this paper focuses on the computation of a
single eigenvalue, and we therefore restrict ourselves to block size 1.

We combine LOBPCG with HTD for the solution of a linear symmetric eigenvalue problem
ApX q � λX with X P Rn1�����nd and a given preconditioner B. The algorithmic description
given in Algorithm 2 is nearly identical with Algorithm 1, with the notable difference that the
iterates are repeatedly truncated to low-rank HTD by means of a truncation operator T . This
truncation can be tuned with user-specified options, the prescribed maximal hierarchical rank and
maximal truncation error. The evaluation of ApX q,B�1pX q typically represents the major part
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of the computational cost. The following details are essential for the successful implementation
of Algorithm 2:

• To avoid numerical instabilities due to ill-conditioning of the matrix Uk in Algorithm 1, it is
often [1, 17] recommended to orthogonalize Uk before calculating pλk�1, yq. However, in the
context of low-rank tensors, orthogonalization by, e.g., Gram-Schmidt, is not practical, as
the ranks would grow significantly and additional truncation would destroy orthogonality.

• As the application of A and B�1 usually increases the rank of a tensor significantly, we
truncate the tensors Rk and Pk before setting up the 3�3 eigenvalue problem. Depending
on the nature of A and B�1, truncation might even be required during the application of
these operators. While the convergence of LOBPCG is quite tolerant to such truncations,
the reduced Gram matrices rA and �M need to be calculated exactly to guarantee the
accuracy of the eventually attained eigenpair approximation. In particular, this requires
computing the inner products xUi,UjyA without truncation. This turns out to be possible
even for high-order tensors in HTD in a number of situations, for example when A is a
short sum of Kronecker products or, more generally, when A is represented in low-rank
HTD [20]. The user is therefore required to provide not only functions for applying A,B�1

but also a function for evaluating A-inner products with tensors in HTD; an operation that
will be available in the htucker toolbox [20].

3.1 Numerical experiments

In the following, Algorithm 2 is applied to two quite different examples.

Example 3.1. Consider the PDE eigenvalue problem (1) with Ω � r0, πsd and potential V pξq �

q �
±d
i�1 sinpξiq for some constant q ¡ 0. We aim to compute the smallest eigenvalue and its

eigenvector.
Similarly as in the TT format [15, 26], the discretization AL of the Laplace operator can

be represented by a tensor in HTD, with all hierarchical ranks equal to 2 [20]. The potential V
is separable and therefore leads to a matrix AV that can be written as the Kronecker product
of d matrices. As a preconditioner in LOBPCG, we use the results from [7] to construct an
approximate inverse of the AL having the form

A�1
L �

» 8

0

expp�tALqdt �
M̧

j��M

ωj expp�αjA
pdq
L q b � � � b expp�αjA

p1q
L q �: B�1, (9)

for a certain, optimized choice of coefficients αj , ωj ¡ 0. Note that all matrices A
piq
L are sym-

metric positive definite and comparably small. Therefore, the matrix exponentials can evaluated
in a stable and efficient manner by calling the Matlab function expm. In applications with

large and possibly nonsymmetric A
piq
L , different methods need to be used for approximating the

matrix exponentials, see [25] for an overview. Alternatively, the tensor Krylov subspace method
from [18] could be used for directly approximating the action of A�1

L .
We choose d � 10 and discretize with n � 128 uniformly spaced nodes in each dimension,

using finite differences. The preconditioner (9) uses M � 10, and the maximally allowed hi-
erarchical rank is set to 50 throughout all iterations. Figure 2 illustrates the performance of
Algorithm 2 applied to this problem, using truncation with a relative error eps smaller than 10�2,
10�4 or 10�8, respectively. The plots show the residual and maximal rank at every step.

It can be observed that the convergence depends strongly on the choice of eps. In the case q �
1000, choosing eps too large may even lead to stagnation. Since the preconditioner is less effective
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Figure 2: Algorithm 2 (LOBPCG with low-rank truncation) applied to Example 3.1, with q � 1
(left plot) and q � 1000 (right plot). The lines represent the residual, while the dots represent
the maximal rank in each iteration.

for this case, this may also serve as a confirmation that the availability of a good preconditioner is
even more critical in our low-rank variant of LOBPCG. Furthermore, the hierarchical ranks tend
to grow quite rapidly in the transient phase of the iteration, only decreasing when the asymptotic
regime of convergence is reached. �

The intermediate rank growth of Algorithm 2 and the observation that overly aggressive
truncation potentially leads to stagnation, has motivated and still motivates the search for other
methods. However, there are particular settings to which other methods, such as the ones
described below, are not applicable. Such a setting arises from an approach to calculate the
position and the value of the smallest entry of a given tensor C in HTD. Following a suggestion
in [4, Sec. 6.2.2] for determining the largest entry of a high-order tensor, we define a diagonal
matrix A with the entries of C on the diagonal. Clearly, the smallest eigenvalue of A is the
smallest entry of C. Also, the corresponding eigenvector will have exactly one nonzero entry at
the corresponding position, provided that the smallest eigenvalue is simple. Hence, the desired
eigenvector of A is a tensor with all hierarchical ranks equal to 1.

Example 3.2. We consider a discretized stationary heat equation with conductivity coefficient
depending on p parameters, as described in more detail in [19, Sec. 4]. Sampling the solutions
on a tensorized grid of parameter values results in a tensor Y of order d � p� 1. The first mode
of this tensor, Yp:, i1, . . . , ipq, contains the temperature distribution in the physical domain for

certain parameter values α
p1q
i1
, . . . , α

ppq
ip

. The mean temperature across the computational domain
is then given by

Cpi1, . . . , ipq �
1

N

Ņ

j�1

Ypj, i1, . . . , ipq.

It is now of interest to find the parameter values which give minimal mean temperature, corre-
sponding to finding the smallest entry of C. Using the low-rank CG method described in [19], the
tensor C is already in HTD, which we truncate further up to a relative error eps � 10�4.

In our experiments, we have considered the cases p � 4 and p � 9 with n � 101 samples for
each parameter. Figure 3 shows the convergence of Algorithm 2 applied to the diagonal embedding
A of C as described above. For the repeated truncation to HTD, we used a maximal rank of 50
and a truncation tolerance of eps � 10�1. It can be observed that the ranks increase and then
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Figure 3: Algorithm 2 applied to determining the smallest entry of a tensor, for a tensor of order
d � 4 (left plot) and d � 9 (right plot).

decrease again, eventually reaching rank 1. At this point, the iteration should be continued until
all matrices Ut at leaf nodes in the dimension tree of Xk have one clearly dominant entry. The
positions of this entries in the leaf matrices give the coordinates of the smallest entry, which can
then be used to extract the exact smallest value from C. �

4 Alternating optimization

One of the drawbacks of directly combining LOBPCG (or other iterative methods) with HTD
is the intermediate rank growth observed in the numerical examples above. Avoiding this rank
growth, a rather different class of methods originates from Computational Quantum Mechanics,
in particular the Density Matrix Renormalization Group (DMRG) method. In these methods,
the problem at hand is posed as an optimization problem, which is then constrained to the low-
rank tensor structure imposed on the solution. ALS (Alternating Linear Scheme) and MALS
(Modified ALS) are particular instances of this class, and have been proposed in [12, 3, 14, 27]
in combination with the TT low-rank tensor format. In the following, we will discuss the use of
ALS and MALS in combination with HTD.

4.1 ALS combined with HTD

Computing the smallest eigenvalue of a symmetric matrix is equivalent to minimizing the Rayleigh
quotient xX ,ApX qy{xX ,X y. Following the principle outlined above, the Rayleigh quotient is re-
stricted to all tensors in HTD with prescribed hierarchical ranks rt:

min
!xX ,ApX qy

xX ,X y
: X P H-Tucker

�
prtqtPT

�
, X �� 0

)
(10)

where H-Tucker is defined as in (8).
The general principle of ALS for low-rank structures that are represented by tensor networks

is to alternately optimize individual nodes of the tensor network. For this purpose, the admissible
set of the optimization problem is restricted such that only the tensor associated with the selected
node is variable while the tensors associated with all other nodes remain fixed. One sweep of
ALS is completed after visiting each node once. For a tensor X in HTD, every step of ALS
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corresponds to the selection of one node in the dimension tree. Formulating the associated
restricted optimization problem is highly technical and we will only illustrate the procedure for
a non-leaf node t in the following; the formulation is similar for a leaf node.

Each non-leaf node t of a dimension tree corresponds to a transfer tensor Bt P Rrtl�rtr�rt ,
where tl and tr are the left and right children of t, respectively. When selecting such a node
in ALS, only this transfer tensor is allowed to vary in the optimization problem (10) while all
other transfer tensors and the leaf bases remain fixed. Recalling the nestedness property (6), the
matricization Xptq can be decomposed as

Xptq � UtV
T
t �

�
Utr b Utl

�
BtV

T
t ,

for some matrix Vt, where Bt P Rrtlrtr�rt is a matricization of Bt. Vectorizing this relation yields

vecpX q �
�
Vt b Utr b Utllooooooomooooooon

�:Ut

�
vecpBtq, (11)

provided that we are in a situation where tl � t1, . . . , iu and tl � ti� 1, . . . , ju for some 1 ¤ i  
j ¤ d. In other situations, a similar relation holds after permuting the dimensions appropriately.
Using (11), the restricted optimization problem takes the form

min

"
yT rAty
yT �Mty

: y P Rrtlrtr rt , y �� 0

*
, (12)

with the reduced matrices rAt :� UTt AUt, �Mt :� UTt Ut. (13)

Clearly, the solution of (12) is given by an eigenvector y belonging to the smallest eigenvalue of

the matrix pencil rAt � λ�Mt, provided that this pencil is not singular. In one step of ALS, the
transfer tensor Bt is replaced by the tensor representation of this eigenvector y.

It remains to explain how the reduced matrices in (13) are computed. This can only be
performed efficiently if A can be written as a (short) sum of Kronecker products or if A is in
HTD. In the following, we focus on the first case and restrict ourselves to one term in the sum:
A � Ad b � � � bA2 bA1 with Ai P Rni�ni . Using (11), we obtain

rAt � �
Vt b Utr b Utl

�TA�Vt b Utr b Utl
�
� pAt b rAtr b rAtl ,

where rAtl � UTtl

�â
iPtl

Ai

	
Utl ,

rAtr � UTtr

�â
iPtr

Ai

	
Utr ,

pAt � V Tt

�â
iRt

Ai

	
Vt.

These reduced matrices exhibit the same structure as the Gram matrices introduced in [8, P.
2045]. Such Gram matrices are computed by tensor contractions as explained in more detail
in [20]. An intuitive way to see this is to note that the inner product xX ,ApX qy can be expressed

as a tensor network, see Figure 4 for an illustration. It follows that rAtl , rAtr , pAt are subnetworks,
which can be evaluated efficiently by matrix-matrix products. In particular, note that the matrix
Vt does not need to be constructed explicitly for the computation of pAt. Without going into
details, it is important to reuse parts of these computations in subsequent steps of ALS, which
can be achieved if the nodes are visited in a certain order. Traversing the dimension tree in a
depth-first search (DFS) fashion gives a suitable ordering, see also Figure 5.

The reduced matrix �Mt in (13) can be calculated in the same way as rAt, simply by replacing
the factors Ai by identity matrices.
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rA12
rA34

pA1234

Figure 4: Tensor network corresponding to the inner product xX ,ApX qy with X in HTD and

A � Adb� � �bA1. The subnetworks corresponding to the Gram matrices rAtl , rAtr , pAt are marked
by dashed lines.

2

1

3 4 6 7

5

Figure 5: Illustration of the DFS ordering, in which the nodes are traversed in one sweep of ALS,
for a tensor of order 4 in HTD.

Remark 4.1. The computation of �Mt can be avoided if the columns of U form an orthonormal
basis, which is equivalent to requiring that the columns of Vt, Utr , Utl form orthonormal bases.
This property also helps to avoid U becoming nearly rank-deficient, which would lead to numerical
instabilities in the eigenvalue computation for the reduced pencil rAt�λ�Mt. The orthonormality
of U can always be achieved by applying an orthogonalization procedure very similar to [8, Alg.
3]. Analogously to the computation of Gramians, the computational cost of this orthogonalization
procedure can be kept small if the nodes are visited in DFS order, see Figure 5. �

4.2 MALS combined with HTD

MALS introduces the following modification to the ALS described above: Instead of a node,
an edge of the dimension tree is selected in every step. The nodes connected by this edge are
combined to form a tensor of higher order (order 3 if one of the nodes is a leaf, order 4 otherwise).
Similarly to ALS, the optimization of the Rayleigh quotient is performed only with respect to this
combined tensor. This is, again, equivalent to the solution of a reduced eigenvalue problem (12).
Next, an SVD is applied to approximate the matricization of the resulting eigenvector y by a
product of two low-rank matrices. These two factors are tensorized and replace the tensors at the
nodes connected to the selected edge. More details can be found, e.g., in [12, Pg. 10]. All other
aspects of ALS, such as the construction of the reduced Gram matrices and orthogonalization,
extend immediately to MALS.
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Clearly, one step of MALS is more expensive than one step of ALS, simply because of the
enlarged reduced matrices. However, MALS offers a number of distinct advantages: First of all,
the low-rank approximations for splitting the combined tensors allow an adaptive choice of the
hierarchical ranks in the course of the method. Moreover, since the optimizations are performed
on much larger subspaces in every step, MALS can be expected to converge faster and is less
likely to get stuck in local minima.

4.3 Combination with LOBPCG

In ALS and more pronouncedly in MALS, the solution of the reduced eigenvalue problem (12)
may become very expensive even for moderate hierarchical ranks. If r denotes the maximal
hierarchical rank and n the maximal size of the tensor then a direct eigenvalue solver [6] would
require Opn3r3q operations in the case of a leaf node and Opr9q operations in the case of a non-
leaf node in one step of ALS. For MALS, the number of operations grows to Opn3r6q and Opr12q,
respectively. The use of a Krylov subspace method, as implemented in ARPACK (Matlab’s
eigs), can reduce this cost to a certain extent. However, searching for the smallest eigenvalue
usually requires the use of shift-and-invert techniques, which requires the explicit construction
and factorization of the possibly dense matrix rAt.1 Instead, we will use, as proposed in [27], the
LOBPCG method for solving (12).

In MALS, the matricization of the desired eigenvector y can be expected to admit a good
low-rank approximation. This can be exploited to reduce the computational cost further, by
applying the low-rank LOBPCG proposed in Algorithm 2. Note that a variation of Algorithm 2
needs to be used, replacing the HTD by a low-rank matrix format.

It is not advisable to use LOBPCG in all situations, especially when the size p of the reduced
eigenvalue problem is small. Following [3], we suggest the following criteria:

p   1000: use dense symmetric eigenvalue solver (Matlab’s eig);
p   4000: use shift-and-invert Arnoldi (Matlab’s eigs);
p   50000: use standard LOBPCG;
p ¥ 50000: use low-rank LOBPCG (only within MALS).

Both, standard and low-rank LOBPCG greatly benefit from the use of a good preconditioner.
For this purpose, a given preconditioner P for the original matrix A can be turned into a
preconditioner UTPU for UTAU . This choice is motivated by the following result: If A,P are
symmetric positive definite then

κ
�
pUTPUq�1 UTAU

	
¤ κpP�1Aq, for UTU � I.

This follows immediately from an eigenvalue interlacing property for matrix pencils, see, e.g., [21].

4.4 Implementation details

The implementation of ALS and MALS depends on a number of parameter choices. In particular,
the stopping criterion for LOBPCG (or any other iterative method) applied to the reduced
eigenvalue problem (12) is critical to the execution time of the overall method.

1Note that rAt is represented as a sum of Kronecker products and this property could be used in an iterative
method for solving linear systems with rAt. However, such an inner iteration would require additional parameter
choices and it may not always lead to computational benefits.
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Stopping criteria for LOBPCG in ALS. As suggested in [3] for the case of ALS applied
to linear systems, we use the following adaptive choice for terminating LOBPCG: Let res be an
estimate for the norm of the residual for the eigenvalue/eigenvector approximation to A obtained
after completing the previous sweep of ALS. Then LOBPCG is stopped when the residual for the
reduced eigenvalue problem becomes smaller than γ � res, where γ is a user-specified parameter
(γ � 10�2 in all numerical examples). Note that the choice of γ may need to be adjusted to the
problem to achieve optimal performance. Furthermore, LOBPCG is stopped after a maximum
number of iterations (chosen to be 100 in all numerical examples).

Truncation criteria for MALS. Independent of the particular inner solver, the splitting of
the combined tensor in every step of MALS requires a choice of tolerance eps for neglecting small
singular values in the low-rank approximation. It is important to adjust eps in every sweep
of MALS [3]. In the beginning of the iteration, eps should be chosen quite large to avoid an
excessive growth of ranks. Once the iteration settles to convergence, eps should be decreased
to attain good asymptotic convergence and accuracy. The choice of when to decrease ε is quite
subtle. Currently, a heuristics is used for this purpose; a theoretically justified automated choice
of eps remains open. Apart from eps, the maximally allowed rank is limited by a user-specified
value.

Stopping criteria for (low-rank) LOBPCG in MALS. For the low-rank truncation in
Algorithm 2 (low-rank LOBPCG), we use the same criteria as explained for low-rank truncation
in MALS. In the choice of stopping criteria, it is important to take into account that it will be
impossible to attain an arbitrarily small residual, due to the low-rank structure imposed on the
eigenvector of the reduced eigenvalue problem. Hence, instead of requiring that the residual is
smaller than a certain tolerance, we choose to terminate Algorithm 2 when stagnation occurs.
More specifically, the algorithm is stopped when the residual does not decrease within s steps
(s � 10 in all numerical examples).

When using standard LOBPCG in MALS, we could in principle use the same stopping cri-
terion as in ALS. However, such a choice may lead to an unnecessarily high accuracy compared
to the approximation error introduced when splitting the combined tensor. To avoid this waste
of LOBPCG iterations, we use the stopping criterion

}xk � xk�s} ¤ eps,

with eps and s defined as above.

5 Numerical Experiments

Most of our experiments will be concerned with the PDE eigenvalue problem (1), which was
already used in Example 3.1. In all examples, a random starting vector was chosen (with pre-
scribed ranks for ALS, with all hierarchical ranks equal to 2 for MALS). Note that an intelligent
choice of starting vector would possibly include components from eigenvectors of the discretized
Laplace operator. We have deliberately decided not to do this, in order to reflect the more typical
setting when no particularly good choice of starting vector is available.

All numerical experiments have been performed in Matlab, version 7.7.0.471, on an Intel
Xeon DP X5450 with 3 GHz and 2 � 6MB L2 Cache. In the following, we will refer to the
following quantities.
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Figure 6: ALS (left plot) and MALS (right plot), applied to Example 3.1 – PDE eigenvalue
problem with sine potential and q � 1.

err lambda: Absolute eigenvalue error |λ � λk| after the kth sweep of (M)ALS. As the exact
value of λ is not known, an estimate based on the minimum of all computed Rayleigh
quotients is used.

res � }ApXkq � λkXk}2: Residual norm after the kth sweep of (M)ALS.

nr iter: Maximal number of LOBPCG iterations for solving the reduced eigenvalue problems
within one sweep. Note that no number of iterations are provided when Matlab’s eig or
eigs are used for the solution.

eps: Tolerance for low-rank truncations as explained in Section 4.4.

rank: Maximal hierarchical rank in one sweep of MALS.

Example 5.1. This example is a continuation of Example 3.1, to which we now apply ALS and
MALS. In ALS, all hierarchical ranks are set to 7 for q � 1 and to 40 for q � 1000, while MALS
is used with a maximal hierarchical rank of 30. The choice of eps for MALS is varied in the course
of the iteration as shown in the plots. If not stated otherwise, we have used the preconditioner
UTPU explained in Section 4.3, where P coincides with the Laplace-based preconditioner used in
Example 3.1.

The obtained results are displayed in Figures 6 and 7. For q � 1, both ALS and MALS nearly
reach the eventually attained accuracy within only two sweeps. For q � 1000, the convergence
is still very satisfactory even though the quality of the preconditioner is worse. Compared to
low-rank LOBPCG applied to the full eigenvalue problem, see Example 3.1, the convergence of
(M)ALS is significantly more robust and faster.

In the following, we will explore some of the choices made in the design of our (M)ALS
methods in Section 4. First, Figure 8 shows the convergence for 10 runs of (M)ALS where in
every sweep the nodes of the hierarchical tree are traversed in a fixed but random ordering. This
is compared with our choice of traversing the tree in DFS ordering, which was needed to keep the
computational cost minimal. Apparently, the choice of ordering has little influence on the overall
convergence of ALS and MALS.

Second, to investigate the impact of using the preconditioner UTPU in LOBPCG, we re-
peat our experiments with no preconditioner, see Figure 9. It turns out that the availability of

12



0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

10
5

Execution time [s]

 

 

0 100 200 300 400 500
15

20

25

30

35

40

45
err_lambda

res

nr_iter

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

10
5

Execution time [s]

 

 

0 100 200 300 400 500
0

20

40

60

80

100
err_lambda

res

eps

rank

nr_iter

Figure 7: ALS (left plot) and MALS (right plot), applied to Example 3.1 – PDE eigenvalue
problem with sine potential and q � 1000.
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Figure 8: ALS (left plot) and MALS (right plot) with DFS ordering and 10 random orderings
applied to Example 3.1 – PDE eigenvalue problem with sine potential and q � 1000. In contrast
to all other plots, the eigenvalue approximation error is displayed for every step of (M)ALS.
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Figure 9: ALS (left plot) and MALS (right plot), applied to Example 3.1 – PDE eigenvalue
problem with sine potential and q � 1000. In contrast to Figure 7, no preconditioner is used.

a preconditioner is critical for the performance of ALS. Since the maximal number of allowed
iterations for LOBPCG is nearly always attained, the obtained approximation to the solution of
the reduced eigenvalue problem is poor, resulting in a significantly slower convergence of ALS.
In contrast, the availability of a preconditioner seems to have almost no influence on the con-
vergence of MALS. However, it would be misleading to conclude that MALS generally requires
no preconditioning. In this particular example, the hierarchical ranks grow quite slowly in the
beginning so that eig(s) instead of LOBPCG is used in the critical first stage of MALS sweeps.
Only at the 5th sweep does the method switch to LOBPCG, but by then the current iterate of
MALS already represents a rather good approximation. In such a case, the reduced eigenvalue
problems can be expected to feature a much more narrow eigenvalue distribution and demand no
preconditioning. �

Example 5.2. We consider the same discretized PDE eigenvalue problem as in Example 3.1,
but with the sine potential replaced by a Henon-Heiles potential as defined in [24, 29, 5]:

V pξq �
1

2

ņ

j�1

σjξ
2
j �

n�1̧

j�1

�
σ�pξjξ

2
j�1 �

1

3
ξ3j q �

σ2
�

16
pξ2j � ξ2j�1q

2
	
.

In our experiments we have chosen σj � 1, σ� � 0.2, and the computational domain Ω �
r�10, 2sd. The discretized potential AV , see (4), has the structure

ḑ

i�1

I b � � � b Ilooooomooooon
d�i times

bCi b I b � � � b Ilooooomooooon
i�1 times

�
d�1̧

i�1

I b � � � b Ilooooomooooon
d�i�1 times

bBi�1 bAi b I b � � � b Ilooooomooooon
i�1 times

.

Any matrix with such a structure can be represented exactly in HTD with rank 4, see [20, 27],
leading to a significantly reduced cost compared to the straightforward Kronecker product pre-
sentation. Note that the first sum of the potential can be absorbed into the discretized Laplace
operator and accounted for in the construction of the preconditioner. Although we make use
of this property in our implementation, we have not observed a dramatic positive effect on the
convergence. We choose d � 20 and discretize with n � 128 uniformly spaced nodes in each
dimension. In the ALS method, we set all hierarchical ranks to 40, while a maximal hierarchical
rank of 50 is used in MALS. Figure 10 contains the obtained results. Interestingly, MALS is 2 to
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Figure 10: ALS (left plot) and MALS (right plot), applied to Example 5.2 – PDE eigenvalue
problem with Henon-Heiles potential.
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Figure 11: ALS (left plot) and MALS (right plot), applied to Example 5.3 – PDE eigenvalue
problem with potential 1{}ξ}2.

3 times slower than ALS due to rapid rank growth in the first sweeps until the imposed maximal
rank 50 is reached. �

Example 5.3. As a final PDE eigenvalue example, we consider the hydrogen-like potential
V pξq � 1{}ξ}2 which features a singularity in the chosen domain Ω � r�1, 1sd. Although the
discretization of this potential has full hierarchical rank, there exist highly accurate low-rank ap-
proximations. Such approximations can be constructed by means of an exponential sum, see [9].
In our experiments, we use 10 terms of this sum, leading to a hierarchical rank of 10. We choose
d � 10 and once again discretize with n � 128 uniformly spaced nodes in each dimension. In
the ALS method, we set all hierarchical ranks to 30, while a maximal hierarchical rank of 40 is
used in MALS. As can be seen in Figure 11, MALS converges somewhat faster. Compared to the
results for the sine potential with d � 10 (see Figures 6 and 7), the execution time is significantly
higher due to the more complicated nature of the potential. �
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Figure 12: MALS with full LOBPCG (left plot) and with low-rank LOBPCG (right plot), for
the spin system from Example 5.4.

Example 5.4. Our final example is a spin system from [14], with d � 64 and n � 2:

A �
ḑ

i�1

I b � � � b Ilooooomooooon
d�i times

bσx b I b � � � b Ilooooomooooon
i�1 times

�
d�1̧

i�1

I b � � � b Ilooooomooooon
d�i�1 times

bσz b σz b I b � � � b Ilooooomooooon
i�1 times

.

where σx �

�
0 1
1 0

�
and σz �

�
1 0
0 �1

�
are Pauli matrices. Note that, as for the Henon-

Heiles potential, this matrix has an HTD with hierarchical ranks 4. Moreover, A is not positive
definite and we search for the smallest eigenvalue, which is negative, and for its eigenvalue. We
do not make use of any preconditioner.

The small sizes n � 2 of the tensor cause significant overhead in HTD, and we therefore
reshape the problem such that the desired eigenvector is represented by a tensor of order d � 16
with n � 16.

The convergence of MALS is displayed in Figure 12, using a maximal hierarchical rank of
40. To demonstrate the significance of employing a low-rank version of LOBPCG for the reduced
eigenvalue problems, we deliberately turned off the use of Algorithm 2 in the left plot. In contrast,
the right plot uses the strategy proposed in this paper, which implies that Algorithm 2 is used in
the last 4 sweeps. It is obvious from the execution times that the addition of low-rank LOBPCG
results in significant speed-up for larger ranks. �

6 Conclusions

We have presented and compared a number of low-rank tensor techniques for computing the
smallest eigenvalue of a symmetric, discretized high-dimensional eigenvalue problem.

It has turned out that the most straightforward approach, combining a classical iterative
method with low-rank truncation, exhibits convergence and robustness issues but may be the
only choice for certain applications. Although we have only explored the use of LOBPCG,
we expect similar findings for methods based on Krylov subspaces, which, however, have the
additional complication of not admitting a natural way to incorporate preconditioners.

We have developed a novel combination of (M)ALS with HTD and demonstrated that it offers
a very satisfying approach to a number of applications. Moreover, it has been shown that the
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use of a low-rank LOBPCG method for solving subproblems in MALS is crucial in applications
featuring high ranks.

While it is conceptually not difficult to extend the presented algorithms to the computation of
several eigenvalues, at least for LOBPCG, the nonsymmetric case remains open. An interesting
approach to nonsymmetric eigenvalue problems has recently been proposed by Meerbergen and
Spence in [23]. Currently, this approach is limited to second order tensors (i.e., low-rank matrices)
and its extension to high-order tensors remains to be explored.

Acknowledgments: The authors thank Mischa Obrecht, who studied the combination of
iterative methods for solving matrix eigenvalue problems with HTD in the context of a semester
project.
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