
n-Widths and ε-dimensions for high-dimensional sparse
approximations

Dinh Dunga∗, Tino Ullrichb

a Vietnam National University, Hanoi, Information Technology Institute
144, Xuan Thuy, Hanoi, Vietnam

bHausdorff-Center for Mathematics, 53115 Bonn, Germany

February 3, 2012 -- Version 2.06

Abstract

We study linear hyperbolic cross approximations, Kolmogorov n-widths and ε-
dimensions of periodic multivariate function classes with anisotropic smoothness in
high-dimensional settings. Indeed, if f is a d-variate function and n the dimension of
the linear approximation space, both parameters n and d play the same essential role
in asymptotic estimations of convergence rates. We prove upper and lower bounds
for the error measured in an isotropic Sobolev space, of linear approximations by
trigonometric polynomials with frequencies from sparse hyperbolic cross spaces as
well as corresponding n-widths and ε-dimensions of function classes with anisotropic
smoothness. In the estimates we particularly care for the respective dependence on
the dimension d. From the received results it follows that in some cases the curse
of dimensionality can be really broken. In other cases we are able to state negative
results as a consequence of the obtained lower bounds.
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1 Introduction

In recent decades, there has been increasing interest in solving problems that involve func-
tions depending on a large number d of variables. These problems arise from many ap-
plications in mathematical finance, chemistry, physics, especially quantum mechanics, and
meteorology. It is not surprising that these problems can almost never be solved analytically
such that one is interested in a proper framework and efficient numerical methods for an
approximate treatment. Classical methods suffer the “curse of dimensionality” coined by
Bellmann [2]. In fact, the computation time typically grows exponentially in d, and the
problems become intractable already for mild dimensions d without further assumptions.
A classical model, widely studied in literature, is to impose certain smoothness conditions
on the function to be approximated; in particular, it is assumed that mixed derivatives are
bounded. This is the typical situation for which “sparse grid” algorithms are made for.
Sparse grid techniques have applications in quantum mechanics and PDEs [42, 43, 44, 20],
finance [18], numerical solution of stochastic PDEs [6, 7, 31, 32], data mining [17] and many
more (see also the surveys [4] and [19] and the references therein). One of the most popu-
lar sparse grid methods are so-called “hyperbolic crosses” which have been widely used for
trigonometric polynomial approximations of functions with a bounded mixed smoothness.
This important additional requirement dates back to Babenko [1]. For further surveys and
references on the topic see the monograph [36] and [12], the references given there, and the
more recent contributions [39, 33]. Similar sparse grids for sampling recovery and numerical
integration were first considered by Smolyak [30] and further developed in [14, 15, 36, 33, 39].
Later on, this terminology was extended to approximations by wavelets [8, 34], to B-splines
[16, 35], and even to algebraic polynomials where frequencies are replaced by dyadic scales
or the degree of algebraic polynomials [6, 7]. To mention all the relevant contributions to
the subject would go beyond the scope of this paper.

In the present paper, we study linear sparse hyperbolic cross grid approximations and
the well-known Kolmogorov n-widths in isotropic Sobolev space Hγ, γ ∈ R, of periodic
multivariate function classes with anisotropic smoothness in high-dimensional settings. In
particular, if W is a class of d-variate functions and n represents the dimension of the
linear approximation space, both parameters n and d play the same essential role for the
asymptotic estimates of the n-widths dn(W,X).

Let us recall the notion of the Kolmogorov n-widths [23] and linear n-widths introduced
by Tikhomirov [37]. If X is a normed space and W a subset in X then the Kolmogorov
n-width dn(W,X) is given by

dn(W,X) := inf
Ln

sup
f∈W

inf
g∈Ln
‖f − g‖X ,

where the outer inf is taken over all linear manifolds Ln in X of dimension at most n. A
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slightly different worst-case setting is represented by the linear n-width λn(W,X) given by

λn(W,X) := inf
Λn

sup
f∈W
‖f − Λn(f)‖X

where the inf is taken over all linear operators Λn in X with rank at most n. It represents a
characterization of the best linear approximation error. There is a vast amount of literature
on optimal linear approximations and the related Kolmogorov and linear n-widths [38], [29],
especially for d-variate function classes [36].

In this paper we are interested in measuring the approximation error in Hγ, therefore
we can assume X to be a Hilbert space H. In this case both concepts coincide, i.e.,

dn(W,H) = λn(W,H)

holds true. Indeed, orthogonal projections onto a finite dimensional space in H give the best
approximation by its elements. Hence, it is sufficient to investigate linear approximations
in Hγ and the optimality of the approximation in terms of dn(W,Hγ).

In computational mathematics, the so-called ε-dimension nε = nε(W,H) is used to
quantify the problem’s complexity. In our setting it is defined as the inverse of dn(W,H).
In fact, the quantity nε(W,H) is the minimal number nε of an nε-dimensional subspace L
in H such that the approximation of W by L (measured in terms of Kolmogorov n-widths)
yields the approximation error ≤ ε (see [10], [11], [13]). We provide upper and lower bounds
of this quantity together with the corresponding n-widths in this paper. The quantity nε
represents a special case of the information complexity which is defined as the minimal
number n(ε, d) of information needed to solve the d-variate problem within error ε (see [26,
4.1.4]). It is the key to study tractability of various multivariate problems. We refer the
reader to the monographs [26, 28] for surveys and further references in this direction.

For the unit balls Uα and Uα1 of the periodic d-variate isotropic Sobolev space Hα and
the space Hα1 with mixed smoothness α > 0, the following well-known estimates hold true

A(α, d)n−α/d ≤ dn(Uα, L2) ≤ A′(α, d)n−α/d, (1.1)

and
B(α, d)n−α(log n)α(d−1) ≤ dn(Uα1, L2) ≤ B′(α, d)n−α(log n)α(d−1). (1.2)

Here A(α, d), A′(α, d), B(α, d), B′(α, d) are certain constants which are usually not com-
puted explicitly. The inequalities (1.1) are a direct generalization of the first result on
n-widths proven by Kolmogorov [23] (see also [24, 186–189]) where the exact values of n-
widths were obtained for the univariate case. The inequalities (1.2) were proven Babenko [1]
already in 1960, where a linear approximation on hyperbolic cross spaces of trigonometric
polynomial is used. These estimates are quite satisfactory if d the number of variables is
small. In high-dimensional settings, i.e., if d is large, it turns out that the smoothness of the
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isotropic Sobolev class Uα is not suitable. Indeed, in (1.1) the curse of dimensionality oc-
curs since here nε ≥ C(α, d)ε−d/α. The class Uα1 is of a certain interest in high-dimensional
problems [4]. Here we have at least nε = O(ε−1/α| log ε|d−1). In this paper, we extend and
refine existing estimates. In particular, we give the lower and upper bounds for constants
B(α, d), B′(α, d) in (1.2) with regards to α, d. In fact, we are concerned with measuring
the approximation error in the isotropic smoothness space Hγ. To motivate this issue let
us consider a Galerkin method for approximating the solution of a general elliptic varia-
tional problem. Let a : Hγ × Hγ → R be a bilinear symmetric form and f ∈ H−γ, where
Hγ = Hγ(Td) and Td is the d-dimensional torus. Assume that

a(u, v) ≤ λ‖u‖Hγ‖v‖Hγ and a(u, u) ≥ µ‖u‖2
Hγ .

Then, a(·, ·) generates the so called energy norm equivalent to the norm of Hγ. Consider
the problem of finding an element u ∈ Hγ such that

a(u, v) = (f, v) for all v ∈ Hγ. (1.3)

In order to get an approximate numerical solution we can consider the same problem on a
finite dimensional subspace Vh in Hγ

a(uh, v) = (f, v) for all v ∈ Vh. (1.4)

By the Lax-Milgram theorem [25], the problems (1.3) and (1.4) have unique solutions u∗

and u∗h, respectively, which by Céa’s lemma [5], satisfy the inequality

‖u∗ − u∗h‖Hγ ≤ (λ/µ) inf
v∈Vh
‖u∗ − v‖Hγ .

Here a naturally arising question is how to choose optimal n-dimensional subspaces Vh and
linear finite element approximation algorithms for the problem (1.4). This certainly leads to
the problems of optimal linear approximation in Hγ of functions from U and Kolmogorov n-
widths dn(U,Hγ), where U is a class of functions u having in some sense more regularity than
the class Hγ. The regularity of the class U (in high-dimensional settings) is usually measured
by L2-boundedness of mixed derivatives of higher order or other anisotropic derivatives.
Finite element approximation spaces based on sparse grids are suitable for this framework.

It is well-known that the cost of approximately solving Poisson’s equation in d dimensions
in the Sobolev space H1 is exponentially growing in d. Standard finite element methods
lead to a cost nε = O(ε−d). If we know in advance that the solution belongs to a space of
functions with dominating mixed second derivative, and if we use sparse hyperbolic cross
grid spaces for finite element methods, then this requires the cost of nε ≤ C(d) ε−1| log ε|d−1.
Here and below, C(d, ...) is various constants depending on d and other parameters. In [3]
it was shown how to get rid of the additional logarithmic term by the use of a subspace of
the sparse grid space. This results in energy norm based sparse grid spaces and H1-norm
approximation of functions with dominating mixed second derivative. Then the total cost
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for the solution of Poisson’s equation is of the order nε ≤ C(d) ε−1. In [21], [22] Griebel
and Knapek generalized the construction of [3] to the elliptic variational problem (1.3).
By use of tensor-product biorthogonal wavelet bases, they constructed for finite element
methods so-called optimized sparse grid subspaces of lower dimension than the standard
full-grid spaces. These subspaces preserve the approximation order of the standard full-grid
spaces, provided that the solution possesses Hα,β-regularity. To this end, they measured the
approximation error in the energy Hγ-norm and estimated it from above by terms involving
the Hα,β-norm of the solution. Here Hα,β is a certain intersection of classes of functions
with bounded mixed derivatives (see the definition in Section 2). The parameter β in Hα,β

governs the isotropic smoothness, whereas α governs the mixed smoothness. It turns out
that the necessary dimension nε of the optimized sparse grid space for the approximation
with accuracy ε does not exceed C(d, α, γ, β) ε−(α+β−γ) if α > γ − β > 0. Due to the
construction, the optimized sparse grids can be considered as an extension of hyperbolic
cross grids.

The curse of dimensionality is not sufficiently clarified unless “constants” such as B(α, d),
B′(α, d) in (1.2) for dn or C(d) and C(d, α, γ, β) in the above inequalities for nε are not
completely determined. We are interested, so far possible, in explicitly determining these
constants. The aim of the present paper is to compute dn(U,Hγ) and nε(U,H

γ) where U
is the unit ball Uα,β in Hα,β or its subsets Uα,β

∗ and the below characterized class Uα,β
ν for

α > γ−β ≥ 0. The function class Uα,β
∗ is the set of all functions f ∈ Uα,β such that f̂(s) = 0

whenever
∏d

j=0 sj = 0. In [21, 22], the authors considered a periodic counterpart of the class

Uα,β
∗ defined via a biorthogonal wavelet decomposition, see Section 5 in the present paper.

They investigated the approximation of functions from this class by optimized sparse grid
spaces.

We establish sharp lower and upper bounds in an explicit form of all relevant components
depending on α, β, γ and d, n, ν. This includes the case (1.2) and its modifications when
α > γ = β = 0. In contrast to [21, 22] we also obtain lower bounds and prove therefore
that sparse hyperbolic cross approximation is optimal in terms of Kolmogorov n-widths.
For the case α > γ − β > 0, we prove that the optimized sparse grid spaces from [21, 22]
are optimal for dn(Uα,β

∗ , Hγ). Moreover, the modifications given in the present paper are
optimal for dn(Uα,β, Hγ) and dn(Uα,β

ν , Hγ). In the case α > γ − β = 0, we prove that
classical hyperbolic cross spaces (see, e.g., [36]) and their modifications in this paper are
optimal for dn(Uα,β

∗ , Hγ), dn(Uα,β, Hγ) and dn(Uα,β
ν , Hγ). On the other hand, what concerns

the curse of dimensionality, we show negative results for the class Uα,β in Hγ.

It seems that smoothness is not enough for ridding the curse of dimensionality. However,
by imposing some additional restrictions on functions in Uα,β this is possible. In fact, Uα,β

ν

is the set of all functions f ∈ Uα,β actually depending on at most ν (unknown) variables by
formally being a d-variate function. For this function class, the curse of dimensionality is
broken. For instance, in Theorem 4.7 in Section 4, for the case α > γ − β > 0, we obtain
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the relations

1

2ρ+3δ
νδ
(

1 +
d

ν(2ρ/δ − 1)

)δν
n−δ ≤ dn(Uα,β

ν , Hγ)

≤
(α
δ

)δ
22ρ+δνδ

(
1 +

d

2ρ/δ − 1

)δν
n−δ,

if n ≥ α
δ
ν2ν(2α/δ+1)(1 + d/(2ρ/δ − 1))ν , where δ := α+ β − γ and ρ := γ − β. A correspond-

ing result for the ε-dimension nε (see Theorem 4.8 in Section 4) states that the number
nε(U

α,β
ν , Hγ) is bounded polynomially in d and ε−1 from above. As a consequence, accord-

ing to [26, (2.3)], we obtain that the problem is polynomially tractable. In addition, the
case γ = β, which contains the classical situation with Uα1

ν instead of Uα1 in (1.2), gives as
well the polynomial tractability, see Theorems 4.10 and 4.11.

Let us mention the relation to the results of Novak and Woźniakowski on weighted tensor
product problems with finite order weights [26, 5.3]. Their approach also limits the number
ν of active variables in a function via a finite order weight sequence (of order ν). However,
since in this paper in most cases neither the spaces Hα,β of the functions to be approximated,
nor the space Hγ, where the approximation error is measured, are tensor product spaces
of univariate ones [34], our results are not included in [26, Theorem 5.8]. Apart from that,
totally different approaches for the approximation of functions depending on just a few
variables in high dimensions are given in [9], [41].

The paper is organized as follows. In Section 2, we describe a dyadic harmonic de-
composition of periodic functions from Hα,β used for norming these classes suitably for
high-dimensional approximations. In Section 3, we prove upper bounds for hyperbolic cross
approximations of functions from U = Uα,β, Uα,β

∗ and Uα,β
ν by linear methods, and for the

dimensions of the corresponding approximation spaces. By means of these results, we are
able to estimate dn(U,Hγ) and nε(U,H

γ) from above. In Section 4, we prove the optimality
of these approximations by establishing lower bounds for dn(U,Hγ). In Section 5, we discuss
the extension of our results to biorthogonal wavelets and more general decompositions.

2 Dyadic decompositions

We will consider functions on Rd which are 2π-periodic in each variable, as functions defined
on the d-dimensional torus Td := [−π, π]d. Denote by L2 := L2(Td) the Hilbert space of
functions on Td equipped with the inner product

(f, g) := (2π)−d
∫

Td
f(x)g(x) dx.

As usual, the norm in L2 is ‖f‖ := (f, f)1/2. For s ∈ Zd, let f̂(s) := (f, e−s) be the sth
Fourier coefficient of f , where es(x) := ei(s,x).
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Let S(Td) be the space of functions on Td whose Fourier coefficients form a rapidly de-
creasing sequence, and S ′(Td) the space of distributions which are continuous linear function-
als on S(Td). It is well-known that, if f ∈ S ′(Td), then the Fourier coefficients f̂(s), s ∈ Zd,
of f form a tempered sequence (see, e.g., [38]). A function in L2 can be considered as an
element of S ′(Td). For f ∈ S ′(Td), we use the identity

f =
∑
s∈Zd

f̂(s)es

holding in the topology of S ′(Td). For r ∈ Rd, the rth derivative f (r) of a distribution f is
defined as the distribution in S ′(Td) given by the identification

f (r) :=
∑

s∈Zd0(r)

(is)rf̂(s)es, (2.1)

where (is)r :=
∏d

j=1(isj)
rj and (ia)b := |a|be(iπb sign a)/2 for a, b ∈ R; Zd

0(r) := {s ∈ Zd : j ∈
σ(r)⇒ sj 6= 0, j = 1, ..., d}, where σ(x) is the support of vector x ∈ Rd.

Let us recall the definition of some well known function spaces with isotropic and
anisotropic smoothness. The isotropic Sobolev space Hγ, γ ∈ R. For γ ≥ 0, Hγ is the
subspace of functions in L2, equipped with the norm

‖f‖2
Hγ := ‖f‖2 +

d∑
j=0

‖f (γεj)‖2,

where εj := (0, ..., 0, 1, 0, ..., 0) is the jth unit vector in Rd. For γ < 0, we define Hγ as the
L2-dual space of H−γ.

For m ∈ N, denote by [m] the set of all positive integers from 1 to m. The space Hr of
mixed smoothness r ∈ Rd is defined as the tensor product of the spaces Hrj , j ∈ [d]:

Hr :=
d⊗
j=1

Hrj .

where Hrj is the univariate Sobolev space in variable xj.

For a finite set A ⊂ Rd, denote by HA the normed space of all distributions f for which
the following norm is finite

‖f‖2
HA :=

∑
r∈A

‖f‖2
Hr .

For α, β ∈ R, let us define the space Hα,β as follows. If β ≥ 0, we put Hα,β := HA, where

A = {(α1 + βεj) : j ∈ [d]} (2.2)
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and 1 := (1, 1, · · · , 1) ∈ Rd. If β < 0, we define Hα,β as the L2-dual space of H−α,−β. The
space Hα,β has been introduced in [22]. Notice that Hα,0 = Hα1 and H0,β = Hβ.

We will need a dyadic harmonic decomposition of distributions. We define for k ∈ Z+,

Pk := {s ∈ Z : 2k−1 ≤ |s| < 2k}, k > 0, P0 := {0},

and for k ∈ Zd
+,

Pk :=
d∏
j=0

Pkj .

For distributions f and k ∈ Zd
+, let us introduce the following operator:

δk(f) :=
∑
s∈Pk

f̂(s)es.

If f ∈ L2, we have by Parseval’s identity

‖f‖2 =
∑
k∈Zd+

‖δk(f)‖2. (2.3)

Moreover, the space L2 can be decomposed into pairwise orthogonal subspaces Wk, k ∈ Zd
+,

by

L2 =
⊕
k∈Zd+

Wk,

with
dimWk = |Pk| = 2|k|1 ,

where Wk is the space of trigonometric polynomials g of the form

g =
∑
s∈Pk

cses.

and |Q| denotes the cardinality of the set Q.

Put |k|1 :=
∑d

j=0 kj and |k|∞ := max1≤j≤d kj for k ∈ Zd
+.

Lemma 2.1 For any α, β ∈ R, we have the following norm equivalence

‖f‖2
Hα,β �

∑
k∈Zd+

22(α|k|1+β|k|∞)‖δk(f)‖2.
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Proof. We need the following preliminary norms equivalence for r ∈ Rd,

‖f‖2
Hr �

∑
k∈Zd+

22(r,k)‖δk(f)‖2. (2.4)

Indeed, for the univariate case (d = 1), by the definition ‖f‖Hr is the norm of the isotropic
Sobolev space Hγ for γ = r. Consequently, by (2.3)

‖f‖2
Hr �

∑
k∈Z+

‖δk(f)‖2
Hγ .

Observe that ‖δk(f)‖2
Hγ � 22γk‖δk(f)‖2. This inequality is implied from the definition

(2.1) for γ ≥ 0, and from the L2-duality of Hγ for γ < 0. Hence, we prove (2.4) for the
univariate case. Since in the multivariate case, Hr is the tensor product of isotropic Sobolev
spaces it is easy derive (2.4) from the univariate case.

Let us prove the lemma. We first consider the case β ≥ 0. Taking A for the definition
of Hα,β as in (2.2), by (2.4) we get

‖f‖2
HA � max

r∈A

∑
k∈Zd+

‖f‖2
Hr

� max
r∈A

∑
k∈Zd+

22(r,k)‖δk(f)‖2

≤
∑
k∈Zd+

22 maxr∈A(r,k)‖δk(f)‖2.

(2.5)

Let us decompose Zd
+ into the subsets Zd

+(r), r ∈ A, such that

Zd
+ =

⋃
r∈A

Zd
+(r), Zd

+(r) ∩ Zd
+(r′) = ∅, r′ 6= r,

and
max
r′∈A

(r′, k) = (r, k), k ∈ Zd
+(r).

(Obviously, such a decomposition is easily constructed and some of Zd
+(r) may be empty

set). Then we have

max
r∈A

∑
k∈Zd+

22(r,k)‖δk(f)‖2 = max
r∈A

∑
r′∈A

∑
k∈Zd+(r′)

22(r,k)‖δk(f)‖2

≥
∑
r′∈A

∑
k∈Zd+(r′)

22(r′,k)‖δk(f)‖2

=
∑
k∈Zd+

22 maxr∈A(r,k)‖δk(f)‖2.
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This and (2.5) show that

‖f‖2
HA �

∑
k∈Zd+

22 maxr∈A(r,k)‖δk(f)‖2.

By a direct computation one can verify that maxr∈A(r, k) = α|k|1 + β|k|∞. This proves the
lemma for the case β ≥ 0.

If β < 0, by the definition, the L2-duality and (2.3)

‖f‖2
Hα,β �

∑
k∈Zd+

2−2(−α|k|1−β|k|∞)‖δk(f)‖2

=
∑
k∈Zd+

22(α|k|1+β|k|∞)‖δk(f)‖2.

On the basis of Lemma 2.1, let us redefine the space Hα,β, α, β ∈ R as the space of
distributions f on Td for which the following norm is finite

‖f‖2
Hα,β =

∑
k∈Zd+

22(α|k|1+β|k|∞)‖δk(f)‖2. (2.6)

With this definition we have H0,0 = L2. We put H0,β = Hβ and Hα,0 = Hα1 as in the
traditional definitions. Denote by Uα,β the unit ball in Hα,β.

In some problems of high-dimensional approximations it is more convenient to take the
definitions of function spaces based on a mixed dyadic decomposition similar to (2.6). In
such a definition, the norm does not explicitly depend on the number d of variables.

We define the subsets Uα,β
∗ and Uα,β

ν , 1 ≤ ν ≤ d − 1, in Uα,β as follows. Uα,β
∗ is the

subset in Uα,β of all f such that

δk(f) = 0 if
d∏
j=0

kj = 0.

The subset Uα,β
ν is the set of all f ∈ Uα,β such that

δk(f) = 0 if |σ(k)| > ν.

Denote by [d] the set of natural numbers from 1 to d, and by σ(x) := {i ∈ [d] : xi 6= 0} the
support of the vector x ∈ Rd. By the definitions we have

1 ≥ ‖f‖2
Hα,β =

∑
k∈Nd

22(α|k|1+β|k|∞)‖δk(f)‖2, f ∈ Uα,β
∗ ,
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and
1 ≥ ‖f‖2

Hα,β =
∑
k∈Zd,ν+

22(α|k|1+β|k|∞)‖δk(f)‖2, f ∈ Uα,β
ν ,

where Zd,ν
+ := {k ∈ Zd

+ : |σ(k)| ≤ ν}.

The function class Uα,β
∗ can also be seen as the subset in Uα,β of all f such that f̂(s) = 0

whenever
∏d

j=0 sj = 0. In case that Hα,β is a subspace of L2(Td) (recall that it is formally

defined as a space of distributions), then every f ∈ Uα,β
∗ has zero mean value in each variable,

i.e., we have almost everywhere (in Td−1) the identities∫
T
f(x)d xj = 0, j ∈ [d].

The function class Uα,β
ν can also be seen as the set of all f ∈ Uα,β such that f̂(s) = 0 if

|σ(s)| > ν. It can be interpreted as the set of of all f ∈ Uα,β such that f are functions of at
most ν variables:

f(x) =
∑

e⊂[d]: |e|=ν

fe(x
e), xe = (xj)j∈e.

In some high-dimensional problems, objects (functions) only depend on a few variables ν
(or represent sums of such objects), where ν is fixed and much smaller than d, the total
number of variables. The class Uα,β

ν represents a model of such functions.

3 Upper bounds for dn and nε

3.1 Linear approximations

Let α, β, γ ∈ R be given. For ξ ≥ 0, we define the subspace in L2

V d(ξ) :=
⊕

k∈Jd(ξ)

Wk,

where
Jd(ξ) := {k ∈ Zd

+ : α|k|1 − (γ − β)|k|∞ ≤ ξ}.

Notice that dimV d(ξ) <∞ for all ξ ≥ 0 if and only if α− (γ− β) > 0. If the last condition
is fulfilled, V d(ξ) is the space of trigonometric polynomials g of the form

g =
∑

k∈Jd(ξ)

δk(g).
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We define also the subspaces V d
∗ (ξ) and V d

ν (ξ) in V d(ξ) by

V d
∗ (ξ)) :=

⊕
k∈Jd∗ (ξ)

Wk, V d
ν (ξ)) :=

⊕
k∈Jdν (ξ)

Wk,

where
Jd∗ (ξ) := {k ∈ Nd : α|k|1 − (γ − β)|k|∞ ≤ ξ},
Jdν (ξ) := {k ∈ Zd,ν

+ : α|k|1 − (γ − β)|k|∞ ≤ ξ}.

For a distribution f , we define the linear operator Sξ as

Sξ(f) :=
∑

k∈Jd(ξ)

δk(f).

Obviously, the restriction of Sξ on L2 is the orthogonal projection onto V d(ξ).

The sets Jd(ξ), Jd∗ (ξ) J
d
ν (ξ) are called hyperbolic cross grids. They are sparse in compar-

ing with standard grids. The corresponding spaces V d(ξ), V d
∗ (ξ) and V d

ν (ξ) of trigonometric
polynomial approximations and the linear operator Sξ which are constructed on these sparse
hyperbolic cross grids are appropriate for linear approximations of functions from Uα,β, Uα,β

∗
and Uα,β

ν . The following lemma and corollary give upper bounds with regard to ξ for the
error of these approximations.

Lemma 3.1 Let α, β, γ ∈ R be given. Then for arbitrary ξ ≥ 0,

‖f − Sξ(f)‖Hγ ≤ 2−ξ‖f‖Hα,β , f ∈ Hα,β.

Proof. Indeed, we have for every f ∈ Hα,β,

‖f − Sξ(f)‖2
Hγ =

∑
k 6∈Jd(ξ)

2γ|k|∞‖δk(f)‖2

≤ sup
k 6∈Jd(ξ)

2−2(α|k|1−(γ−β)|k|∞)
∑

k 6∈Jd(ξ)

22(α|k|1+β|k|∞)‖δk(f)‖2

≤ 2−2ξ‖f‖2
Hα,β .

Corollary 3.2 Let α, β, γ ∈ R satisfy the condition α > γ − β > 0. Then for arbitrary
ξ ≥ 0,

sup
f∈Uα,β

inf
g∈V d(ξ)

‖f − g‖Hγ ≤ sup
f∈Uα,β

‖f − Sξ(f)‖Hγ ≤ 2−ξ;

sup
f∈Uα,β∗

inf
g∈V d∗ (ξ)

‖f − g‖Hγ ≤ sup
f∈Uα,β∗

‖f − Sξ(f)‖Hγ ≤ 2−ξ;

sup
f∈Uα,βν

inf
g∈V dν (ξ)

‖f − g‖Hγ ≤ sup
f∈Uα,βν

‖f − Sξ(f)‖Hγ ≤ 2−ξ.
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In the next two subsections, we establish upper bounds for Kolmogorov n-widths
dn(Uα,β, Hγ), dn(Uα,β

∗ , Hγ) and dn(Uα,β
ν , Hγ) as well their inverses nε(U

α,β, Hγ), nε(U
α,β
∗ , Hγ)

and nε(U
α,β
ν , Hγ) on the basis of Lemma 3.1 and upper bounds of the dimension of the spaces

V d(ξ), V d
∗ (ξ) and V d

ν (ξ).

3.2 The case α > γ − β > 0

For a given θ > 1, we put Cθ := 1 if θ > 2, and Cθ := 1 + 1
θ−1

if 1 < θ ≤ 2. For η ≥ 0, we
define

Idη := {k ∈ Nd : θ|k|1 − |k|∞ ≤ (θ − 1)η + θ(d− 1)}.
For a ≥ 0, denote by bac the largest integer which is equal or smaller then a, and by dae the
smallest integer which is equal or larger than a. To give an upper estimate of the dimension
of the spaces V d(ξ), V d

∗ (ξ) andV d
ν (ξ) we need the following lemma.

Lemma 3.3 Let θ > 1 be a fixed number. Then for any η ≥ 0 the following inequality holds
true ∑

k∈Idη

2|k|1 ≤ Cθ2
1/(θ−1)d2d−1(1− 2−1/(θ−1))−d2η.

Proof. Notice that it is enough to prove the lemma for nonnegative integer η = n. Otherwise,
we can treat it for n = bηc. Consider the subsets Īdn(j), j ∈ [d], in Idn defined by

Īdn(j) := {k ∈ Idn : |k|∞ = kj}.

Obviously, ∑
k∈Idn

2|k|1 ≤
d∑
j=1

∑
k∈Īdn(j)

2|k|1 .

Due to the symmetry, all the sums
∑

k∈Īdn(j) 2|k|1 , j ∈ [d], are equal. Thus, in order to prove
the lemma it is enough to show for instance, that∑

k∈Īdn(d)

2|k|1 ≤ Cθ2
1/(θ−1)2d−1(1− 2−1/(θ−1))−d2n. (3.1)

Observe that for k ∈ Īdn(d), |k|1 can take the values d, ..., n+d−1. Put |k|1 = n+d−1−m
for m = 0, 1..., n − 1. Fix a nonnegative integer m with 0 ≤ m ≤ n − 1. Assume that
|k|1 = n + d− 1−m. Then clearly, k ∈ Īdn(d) if and only if kd ≥ n− θm. It is easy to see
that the number of all such k ∈ Īdn(d), is not larger than(

(n+ d− 1−m)− dn− θme
d− 1

)
=

(
d− 1 + d(θ − 1)me

d− 1

)
.

13



Indeed, for the combinatorial identities behind this statement we refer to the proofs of the
Lemmas 3.8 and 3.10 below. We obtain

∑
k∈Īdn(d)

2|k|1 ≤
n−1∑
m=0

2n+d−1−m
(
d− 1 + d(θ − 1)me

d− 1

)

= 2n+d−1

n−1∑
m=0

2−m
(
d− 1 + d(θ − 1)me

d− 1

)
=: 2n+d−1D(n).

(3.2)

Put ε := (θ−1)−1 and N := d(θ−1)(n−1))e. Replacing m by τ := m/ε in D(n), we obtain

D(n) =
∑

τ∈ε−1{0,1,...,n−1}

2−ετ
(
d− 1 + dτe

d− 1

)
≤

∑
τ∈ε−1{0,1,...,n−1}

2−ε(dτe−1)

(
d− 1 + dτe

d− 1

)
.

We first consider the case θ ≥ 2. For this case, ε ≤ 1. Since the step length of τ is
1/ε ≥ 1, we have

D(n) ≤ 2ε
N∑
s=0

2−εs
(
d− 1 + s

d− 1

)
. (3.3)

Now we consider the case 1 < θ < 2. For this case, the step length of τ is 1/ε < 1. Notice
that then the number of all integers s such that s = dτe, is not larger than 1+1/(θ−1) = 1+ε.
Hence,

D(n) ≤
(

1 +
1

θ − 1

)
2ε

N∑
s=0

2−εs
(
d− 1 + s

d− 1

)
.

It was proved by Griebel and Knapek [22, p.2242–2243] that

N∑
s=0

2−εs
(
d− 1 + s

d− 1

)
= (1− t)−d

[
1− td+N+1

d−1∑
s=0

(
d+N

s

)(
1− t
t

)s] ∣∣∣∣
t=2−ε

≤ (1− 2−1/(θ−1))−d.

(3.4)

By combining (3.2) – (3.4) we obtain (3.1).

Remark 3.4 Lemma 3.3 corrects the last inequality on the bottom of Page 2242 in [22,
Lemma 4.2] from which we adapted some proof techniques.

From now on, for given α, β, γ ∈ R, we will frequently use the notations

δ := α− (γ − β) and ρ := γ − β . (3.5)

Lemma 3.5 Let α, β, γ ∈ R satisfy the conditions α > γ − β > 0. Then we have

14



(i) for any ξ ≥ α(d− 1),

dimV d(ξ) ≤ Cα/ρ2
2ρ/δd(1 + 1/(2ρ/δ − 1))d2ξ/δ,

(ii) for any ξ ≥ α(d− 1),

dimV d
∗ (ξ) ≤ Cα/ρ2

2ρ/δd(2ρ/δ − 1)−d2ξ/δ,

(iii) for any ξ ≥ α(ν − 1),

dimV d
ν (ξ) ≤ Cα/ρ2

2ρ/δν(1 + d/(2ρ/δ − 1))ν2ξ/δ.

Proof. Put θ := α/ρ and η := (ξ − α(d− 1))/δ. We have Jd∗ (ξ) = Idη . Hence, by Lemma 3.3

dimV d
∗ (ξ) =

∑
k∈Jd∗ (ξ)

2|k|1 ≤
∑
k∈Idη

2|k|1

≤ Cθ2
1/(θ−1)d2d−1(1− 2−1/(θ−1))−d2η

≤ Cα/ρ2
2ρ/δd(2ρ/δ − 1)−d2ξ/δ.

Inequality (ii) has been proved.

Let us prove the remaining inequalities of the lemma. For a subset e ∈ [d], put Jd,e(ξ) :=
{k ∈ Jd(ξ) : kj 6= 0, j ∈ e, kj = 0, j 6∈ e}. Clearly, Jd,e(ξ) ∩ Jd,e′(ξ) = ∅, e 6= e′, and

Jd(ξ) =
⋃
e⊂[d]

Jd,e(ξ), Jdν (ξ) =
⋃
|e|≤ν

Jd,e(ξ),

Hence,

V d(ξ) =
⊕
e⊂[d]

V d,e(ξ), V d
ν (ξ) =

⊕
|e|≤ν

V d,e(ξ).

where

V d,e(ξ) :=

g =
∑

k∈Jd,e(ξ)

δk(g)

 .
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From the last equation and Inequality (ii) of the lemma it follows that

dimV d(ξ) =
∑
e⊂[d]

dimV d,e(ξ)

=
d∑

k=0

∑
|e|=k

dimV d,e(ξ)

=
d∑

k=0

(
d

k

)
dimV k

∗ (ξ)

≤
d∑

k=0

(
d

k

)
Cα/ρ2

2ρ/δk(2ρ/δ − 1)−k2ξ/δ

≤ Cα/ρ2
2ρ/δd2ξ/δ

d∑
k=0

(
d

k

)
(2ρ/δ − 1)−k

= Cα/ρ2
2ρ/δd(1 + 1/(2ρ/δ − 1))d2ξ/δ.

(3.6)

Inequality (iii) can be proved in a similar way. Indeed, it can be shown that

dimV d
ν (ξ) =

ν∑
k=0

(
d

k

)
dimV k

∗ (ξ),

and hence, applying Inequality (ii) gives

dimV d
ν (ξ) ≤

ν∑
k=0

(
d

k

)
Cα/ρ2

2ρ/δk(2ρ/δ − 1)−k2ξ/δ

≤ Cα/ρ2
2ρ/δν2ξ/δ

ν∑
k=0

(
ν

k

)
d!(ν − k)!

ν!(d− k)!
(2ρ/δ − 1)−k

≤ Cα/ρ2
2ρ/δν2ξ/δ

ν∑
k=0

(
ν

k

)
dk(2ρ/δ − 1)−k

= Cα/ρ2
2ρ/δν(1 + d/(2ρ/δ − 1))ν2ξ/δ.

Theorem 3.6 Let α, β, γ ∈ R satisfy the conditions 0 < ρ = γ − β < α. Then, we have

(i) for any integer n ≥ Cα/ρ2
ρ/δd2αd/δ(1 + 1/(2ρ/δ − 1))d,

dn(Uα,β, Hγ) ≤ Cδ
α/ρ2

2ρ+δdδ
(
1 + 1/(2ρ/δ − 1)

)δd
n−δ,
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(ii) for any integer n ≥ Cα/ρ2
ρ/δd2αd/δ(2ρ/δ − 1)−d,

dn(Uα,β
∗ , Hγ) ≤ Cδ

α/ρ2
2ρ+δdδ

(
2ρ/δ − 1

)−δd
n−δ,

(iii) for any integer n ≥ Cα/ρ2
ρ/δν2αν/δ(1 + d/(2ρ/δ − 1))ν ,

dn(Uα,β
ν , Hγ) ≤ Cδ

α/ρ2
2ρ+δνδ

(
1 + d/(2ρ/δ − 1)

)δν
n−δ.

Proof. We prove the upper bound in Inequality (i) for dn(Uα,β, Hγ). The other upper bounds
can be proved in a similar way.

Put ϕ(ξ) := dimV d(ξ) Then ϕ is a step function in the variable ξ. Moreover, there are
sequences {ξm}∞m=1 and {ηm}∞m=1 such that

ϕ(ξ) = ηm, ξm ≤ ξ < ξm+1. (3.7)

Notice that
ξm+1 − ξm ≤ δ (3.8)

Indeed, let
ξm = α|k|1 − ρ|k|∞

for some k ∈ Jd(ξ). Without loss of generality we can assume that |k|∞ = kd. Define
k′ ∈ Zd

+ by k′d = kd + 1 and k′j = kj, j 6= d. Then we have

ξm+1 − ξm ≤ α|k′|1 − ρ|k′|∞ − (α|k|1 − ρ|k|∞)

= α(|k′|1 − |k|1)− ρ(|k′|∞ − |k|∞)

= α− ρ = δ.

For a given n satisfying the condition for Inequality (i) of the theorem, let m be the number
such that,

dimV d(ξm) ≤ n < dimV d(ξm+1). (3.9)

Hence, by the corresponding restriction on n in the theorem it follows that ξm+1 ≥ α(d−1).
Putting ξ := ξm we obtain by Lemma 3.5 and (3.8)

n ≤ Cα/ρ2
2ρ/δd(1 + 1/(2ρ/δ − 1))d2ξm+1/δ

≤ Cα/ρ2
2ρ/δ+1d(1 + 1/(2ρ/δ − 1))d2ξ/δ,

or, equivalently,

2−ξ ≤ Cδ
α/ρ2

2ρ+δdδ
(
1 + 1/(2ρ/δ − 1)

)δd
n−δ. (3.10)

On the other hand, by the definitions, (3.9) and Corollary 3.2,

dn(Uα,β
ν , Hγ) ≤ sup

f∈Uα,β
‖f − Sξ(f)‖Hγ ≤ 2−ξ.

The last relations combined with (3.10) prove the desired inequality.
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Theorem 3.7 Let α, β, γ ∈ R satisfy the conditions 0 < γ − β < α. Then we have

(i) for any 0 < ε ≤ 1,

nε(U
α,β, Hγ) ≤ Cα/ρ2

2ρ/δd(1 + 1/(2ρ/δ − 1))dε−1/δ,

(ii) for any 0 < ε ≤ 2−α(d−1),

nε(U
α,β
∗ , Hγ) ≤ Cα/ρ2

2ρ/δd(2ρ/δ − 1)−dε−1/δ,

(iii) for any 0 < ε ≤ 2−α(ν−1),

nε(U
α,β
ν , Hγ) ≤ Cα/ρ2

2ρ/δν(1 + d/(2ρ/δ − 1))νε−1/δ.

Proof. The inequalities (i)–(iii) in the theorem can be proved in the same way. Let us prove
for instance (i). For a given 0 < ε ≤ 2−αd, putting ξ := | log ε|, we get by the definitions
and Corollary 3.2,

sup
f∈Uα,β

inf
g∈V d(ξ)

‖f − g‖Hγ ≤ sup
f∈Uα,β

‖f − Sξ(f)‖Hγ ≤ 2−ξ ≤ ε.

Consequently, Lemma 3.5(i) yields

nε(U
α,β, Hγ) ≤ dimV d(ξ)

≤ Cα/ρ2
2ρ/δd(1 + 1/(2ρ/δ − 1))d2ξ/δ

≤ Cα/ρ2
2ρ/δd(1 + 1/(2ρ/δ − 1))dε−1/δ.

3.3 The case α > γ − β = 0

For m ∈ N, we define
Kd
∗ (m) := {k ∈ Nd : |k|1 ≤ m}.

The following estimates have already been used in [40, Lemma 7]. For convenience of the
reader we will give a prove.

Lemma 3.8 For any m ≥ d, there hold true the inequalities

2m
(
m− 1

d− 1

)
< dimV d

∗ (αm) =
∑

k∈Kd
∗ (m)

2|k|1 ≤ 2m+1

(
m− 1

d− 1

)
.
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Proof. Observe that for k ∈ Kd
∗ (m), |k|1 can take the values d, ...,m. It is easy to check

that the number of all such k ∈ Kd
∗ (m) that |k|1 = j, is(

j − 1

d− 1

)
.

Hence, ∑
k∈Kd

∗ (m)

2|k|1 =
m∑
j=d

(
j − 1

d− 1

)
2j

≤
(
m− 1

d− 1

) m∑
j=0

2j ≤ 2m+1

(
m− 1

d− 1

)
,

and, ∑
k∈Kd

∗ (m)

2|k|1 =
m∑
j=d

(
j − 1

d− 1

)
2j > 2m

(
m− 1

d− 1

)
.

We will use several times the following well-known inequalities for any nonnegative in-
tegers n,m with n ≤ m (m

n

)n
≤
(
m

n

)
≤
(em
n

)n
. (3.11)

Remark 3.9 From Lemma 3.8 together with the relations (3.11) we have

2m
(
m− 1

d− 1

)d−1

<
∑

k∈Kd
∗ (m)

2|k|1 ≤ 2m+1

(
e(m− 1)

d− 1

)d−1

.

This, in particular, sharpens and improves Lemma 3.6 in [4].

For m ∈ Z+, we define
Kd(m) := {k ∈ Zd

+ : |k|1 ≤ m}.

Lemma 3.10 For any d ∈ N and m ∈ Z+, there holds true the inequality

2m
(
m+ d− 1

d− 1

)
< dimV d(αm) =

∑
k∈Kd(m)

2|k|1 ≤ 2m+1

(
m+ d− 1

d− 1

)
.

Proof. Let G(d, j), j ∈ Z+, be the number of all k ∈ Kd(n) such that |k|1 = j. Observe that
G(d, j) coincides with the number of all k ∈ Nd such that |k|1 = j + d, and consequently,

G(d, j) =

(
j + d− 1

d− 1

)
.
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Hence, ∑
k∈Kd(m)

2|k|1 =
m∑
j=0

(
j + d− 1

d− 1

)
2j

≤
(
m+ d− 1

d− 1

) m∑
j=0

2j ≤ 2m+1

(
m+ d− 1

d− 1

)
,

and, ∑
k∈Kd(m)

2|k|1 =
m∑
j=0

(
j + d− 1

d− 1

)
2j > 2m

(
m+ d− 1

d− 1

)
.

Let us define the index set Kd
ν (m) given by

Kd
ν (m) := {k ∈ Zd,ν

+ : |k|1 ≤ m}

for some 1 ≤ ν ≤ d and m ∈ Z+.

Lemma 3.11 Let ν, d ∈ N, m ∈ Z and m, d ≥ ν. Then

2m
(
d

ν

)(
m− 1

ν − 1

)
< dimV d

ν (αm) =
∑

k∈Kd
ν (m)

2|k|1 ≤ 2m+1

ν∑
j=1

(
d

j

)(
m− 1

j − 1

)
. (3.12)

Moreover, if a > 0 is a fixed number and b := a
a+
√
a+1

, then for ν, d,m ∈ N, such that

ν ≤ bmin(d,m), we have

dimV d
ν (αm) =

∑
k∈Kd

ν (m)

2|k|1 ≤ (1 + a)2m+1

(
d

ν

)(
m− 1

ν − 1

)
. (3.13)

Proof. Put
Kd,e(m) := {k ∈ Kd(m) : kj 6= 0, j ∈ e, kj = 0, j 6∈ e}

for a subset e ⊂ [d]. Clearly, we have that∑
k∈Kd

ν (m)

2|k|1 =
m∑
i=0

2i
ν∑
j=1

∑
e⊂[d]
|e|=j

|Kd,e(i)|

=
ν∑
j=1

(
d

j

) m∑
i=j

2i
(
i− 1

j − 1

)

≤
ν∑
j=1

(
d

j

)(
m− 1

j − 1

) m∑
i=j

2i

≤ 2m+1

ν∑
j=1

(
d

j

)(
m− 1

j − 1

)
.

(3.14)
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The lower bound in (3.12) follows from the second line in (3.14). Next, let us prove the
inequality (3.13) by induction on ν. It is trivial for ν = 1. Suppose that it is true for
ν − 1 ≥ 0. Put

S(ν) :=
ν∑
j=1

(
d

j

)(
m− 1

j − 1

)
.

We have by the induction assumption

S(ν) = S(ν − 1) +

(
d

ν

)(
m− 1

ν − 1

)
≤ (1 + a)

(
d

ν − 1

)(
m− 1

ν − 2

)
+

(
d

ν

)(
m− 1

ν − 1

)
≤ (1 + a)ν(ν − 1)

(d+ 1− ν)(m+ 1− ν)

(
d

ν

)(
m− 1

ν − 1

)
+

(
d

ν

)(
m− 1

ν − 1

)
.

(3.15)

By the inequality ν ≤ bmin(d,m), one can immediately verify that ν
√
a+1

d+1−ν ≤
√
a and

(ν−1)
√
a+1

m+1−ν ≤
√
a. Hence, by (3.15) we prove (3.13).

Remark 3.12 For a practical application, if we take ν ≤ min(d/2,m/2), then from Lemma
3.11 we have

2m
(
d

ν

)(
m− 1

ν − 1

)
≤ dimV d

ν (αm) ≤ (
√

5 + 3)2m
(
d

ν

)(
m− 1

ν − 1

)
. (3.16)

Theorem 3.13 Let α, β, γ ∈ R satisfy the conditions α > γ − β = 0. Then the following
relations hold true.

(i) For any n ∈ N,

dn(Uα,β, Hγ) ≤ 4α
(d− 1

e

)−α(d−1)

n−α(d+ log n)α(d−1),

and for any n ≥ 2d,

dn(Uα,β, Hγ) ≤ 4α
(d− 1

2e

)−α(d−1)

n−α(log n)α(d−1).

(ii) For any integer n ≥ 2d,

dn(Uα,β
∗ , Hγ) ≤ 4α

(d− 1

e

)−α(d−1)

n−α(log n)α(d−1).
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(iii) If in addition ν ≤ d/2, then for any n ≥
√

5+3
2

(
d
ν

)(
2ν−1
ν−1

)
22ν+1,

dn(Uα,β
ν , Hγ) ≤ [2(

√
5 + 3)]α

(ν − 1

e

)−α(ν−1)(ν
e

)−αν
dανn−α(log n)α(ν−1).

Proof. We prove the inequality for dn(Uα,β
∗ , Hγ) in Relation (ii). The other inequalities in

Relations (i) and (iii) can be proved in a similar way. For a given n ≥ 2d, by Lemma 3.8
there is a unique m ≥ d such that,

dimV d
∗ (αm) ≤ n < dimV d

∗ (α(m+ 1)). (3.17)

Again, from Lemma 3.8 we get

2m
(
m− 1

d− 1

)
≤

∑
k∈Kd

∗ (m)

2|k|1 = dimV d
∗ (αm) ≤ n

and

n < dimV d
∗ (α(m+ 1)) =

∑
k∈Kd

∗ (m+1)

2|k|1 ≤ 2m+2

(
m

d− 1

)
.

Hence, by (3.11) we obtain

2m = 2m+2
( em

d− 1

)d−1 1

4

( em

d− 1

)−(d−1)

≥ 1

4
n
( em

d− 1

)−(d−1)

.

From the last inequalities we derive

2−αm ≤ 4α
(
[(d− 1)/e]−α(d−1)

)
n−αmα(d−1)

≤ 4α[(d− 1)/e]−α(d−1)n−α(log n)α(d−1).
(3.18)

On the other hand, by the definitions, (3.17) and Corollary 3.2,

dn(Uα,β
∗ , Hγ) ≤ sup

f∈Uα,β∗

‖f − Sαm(f)‖Hγ ≤ 2−αm.

This combined with (3.18) proves the desired inequality.

Theorem 3.14 Let α, β, γ ∈ R satisfy the conditions α > γ − β = 0. Then the following
relations hold true.

(i) For any 0 < ε ≤ 1,

nε(U
α,β, Hγ) ≤ 4

(d− 1

e

)−(d−1)

[α−1| log ε|+ d]d−1ε−1/α,

and for 0 < ε ≤ 2−αd,

nε(U
α,β, Hγ) ≤ 4

(α(d− 1)

2e

)−(d−1)

ε−1/α| log ε|d−1.
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(ii) For any 0 < ε ≤ 2−αd

nε(U
α,β
∗ , Hγ) ≤ 4

(α(d− 1)

e

)−(d−1)

ε−1/α| log ε|d−1.

(iii) If in addition ν ≤ d/2 then for any 0 < ε ≤ 2−2αν

nε(U
α,β
ν , Hγ) ≤ 2(

√
5 + 3)

(α(ν − 1)

e

)−(ν−1)

(ν/e)−νdνε−1/α| log ε|ν−1.

Proof. Let us prove (ii). The other assertions can be proved in a similar way. For a given
ε ≤ 2−αd we take m > d such that

2−αm ≤ ε < 2−α(m−1).

The right inequality gives

2m ≤ 2ε−1/α and m ≤ α−1| log ε|+ 1.

On the other hand, by the definitions, (3.17) and Corollary 3.2,

sup
f∈Uα,β∗

inf
g∈V d∗ (αm)

‖f − g‖Hγ ≤ sup
f∈Uα,β∗

‖f − Sαm(f)‖Hγ ≤ 2−αm ≤ ε.

Consequently, by Lemma 3.8

nε(U
α,β
∗ , Hγ) ≤ 2m+1

(
m− 1

d− 1

)
≤ 4ε−1/α

(
bα−1| log ε|c

d− 1

)
≤ 4

(α(d− 1)

e

)−(d−1)

ε−1/α| log ε|d−1.

4 Optimality and lower bounds for for dn and nε

In this section, we give lower bounds for Kolmogorov n-widths dn(Uα,β, Hγ), dn(Uα,β
∗ , Hγ)

and dn(Uα,β
ν , Hγ) as well their inverses nε(U

α,β, Hγ), nε(U
α,β
∗ , Hγ) and nε(U

α,β
ν , Hγ) by ap-

plying an abstract result on Kolmogorov n-widths of the unit ball, Bernstein type inequal-
ities, and lower bounds of the dimension of the spaces V d(ξ), V d

∗ (ξ) and V d
ν (ξ). We place

the upper bounds of these quantities next to their lower bounds to show the optimality in
the sense of Kolmogorov n-widths and their inverses of the linear sparse hyperbolic cross
approximations by the spaces V d(ξ), V d

∗ (ξ) and V d
ν (ξ), in the high-dimensional setting.
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4.1 Some preparation

The following lemma on Kolmogorov n-widths of the unit ball has been proved in [37,
Theorem 1].

Lemma 4.1 Let Ln+1 be an n+ 1-dimensional subspace in a Banach space X, and
Bn+1(r) := {f ∈ Ln+1 : ‖f‖X ≤ r}. Then

dn(Bn+1(r), X) = r.

Next, we prove a Bernstein type inequality.

Lemma 4.2 Let α, β, γ ∈ R be given. Then for arbitrary ξ ≥ 0,

‖f‖Hα,β ≤ 2ξ‖f‖Hγ , f ∈ V d(ξ).

Proof. Indeed, we have for every f ∈ V d(ξ),

‖f‖2
Hα,β =

∑
k∈Jd(ξ)

22(α|k|1+β|k|∞)‖δk(f)‖2

≤ sup
k∈Jd(ξ)

22(α|k|1−(γ−β)|k|∞)
∑

k∈Jd(ξ)

22γ|k|∞‖δk(f)‖2

≤ 22ξ‖f‖2
Hγ .

4.2 The case α > γ − β > 0

Lemma 4.3 Let 0 < t ≤ 1/2 and k, n be integers such that 0 ≤ k ≤ n/2. Then

tn
k∑
s=0

(
n

s

)(
1− t
t

)s
≤ 1

2
.

Proof. Since (1− t)/t ≥ 1,
(
n
s

)
=
(
n
n−s

)
and 0 ≤ k ≤ n/2, we have(

n

s

)(
1− t
t

)s
≤
(

n

n− s

)(
1− t
t

)s
, s = 0, ..., k.

Hence,
k∑
s=0

(
n

s

)(
1− t
t

)s
≤

k∑
s=0

(
n

n− s

)(
1− t
t

)s
,

24



and consequently,

tn
k∑
s=0

(
n

s

)(
1− t
t

)s
≤ 1

2
tn

n∑
s=0

(
n

s

)(
1− t
t

)s
=

1

2
.

Lemma 4.4 Let 1 < θ ≤ 2. Then for any natural numbers d and n satisfying the condition

d ≤ θ − 1

2θ − 1
n+

2

θ
, (4.1)

there holds true the inequality∑
k∈Idn

2|k|1 ≥ 2−1/(θ−1)d2d−2(1− 2−1/(θ−1))−d2n.

Proof. Consider the subsets Idn(j), j ∈ [d], in Idn defined by

Idn(j) :=

{
k ∈ Idn : |k|∞ = kj, |k|1 ≥

2(θ − 1)

2θ − 1
n+ d− 1 + 2/θ

}
.

We prove that Idn(j)∩ Idn(j′) = ∅ for j 6= j′. Fix j ∈ [d] and let k be an arbitrary element in
Idn(j). Then by the definitions we have

kj ≥ θ|k|1 − (θ − 1)n− θ(d− 1)

≥ 2θ(θ − 1)

2θ − 1
n+ θ(d− 1) + 2− (θ − 1)n− θ(d− 1)

=
θ − 1

2θ − 1
n+ 2.

(4.2)

On the other hand,

θ(|k|1 − kj) + (θ − 1)kj = θ|k|1 − |k|∞ ≤ (θ − 1)n+ θ(d− 1).

Hence,

|k|1 − kj ≤ θ−1[(θ − 1)n+ θ(d− 1)]− θ−1(θ − 1)

[
θ − 1

2θ − 1
n+ 2

]
=

θ − 1

2θ − 1
n+ d− 3 + 2/θ.

Take an arbitrary j′ ∈ [d] such that j 6= j′. Then, since ki ≥ 1 for any i ∈ [d], and θ > 1,
from the last inequality and (4.2) we get

kj′ ≤ |k|1 − kj − (d− 2)

≤ θ − 1

2θ − 1
n+ d− 3 + 2/θ − (d− 2)

=
θ − 1

2θ − 1
n+ 2/θ − 1

< kj.
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This proves that Idn(j) ∩ Idn(j′) = ∅ for j 6= j′. Therefore, there holds true the inequality

∑
k∈Idn

2|k|1 ≥
d∑
j=1

∑
k∈Idn(j)

2|k|1 .

Due to the symmetry, all the sums
∑

k∈Idn(j) 2|k|1 , j ∈ [d] are equal. Thus, in order to prove
the lemma it is enough to show for instance, that∑

k∈Idn(d)

2|k|1 ≥ 2−1/(θ−1)2d−2(1− 2−1/(θ−1))−d2n. (4.3)

Observe that for k ∈ Idn(d), |k|1 can take the values d(2(θ − 1)/(2θ − 1))n + d − 1 +
2/θe, ..., n + d − 1. Put |k|1 = n + d − 1 −m for m = 0, 1...,M , where M := n + d − 1 −
d(2(θ−1)/(2θ−1))n+d−1+2/θe. Fix a nonnegative integer m with 0 ≤ m ≤M . Assume
that |k|1 = n+ d− 1−m. Then clearly, k ∈ Idn(d) if and only if kd ≥ n− θm. It is easy to
see that the number of all such k ∈ Idn(d) is not smaller than(

(n+ d− 1−m)− bn− θmc
d− 1

)
=

(
d− 1 + b(θ − 1)mc

d− 1

)
We have ∑

k∈Idn(d)

2|k|1 ≥
M∑
m=0

2n+d−1−m
(
d− 1 + b(θ − 1)mc

d− 1

)

= 2n+d−1

M∑
m=0

2−m
(
d− 1 + b(θ − 1)mc

d− 1

)
=: 2n+d−1A(n).

(4.4)

Put ε := (θ − 1)−1 and N := b(θ − 1)M)c. Replacing m by τ := m/ε in A(n), we obtain

A(n) =
∑

τ∈ε−1{0,1,...,M}

2−ετ
(
d− 1 + bτc

d− 1

)
≥

∑
τ∈ε−1{0,1,...,M}

2−ε(bτc+1)

(
d− 1 + bτc

d− 1

)
.

Since 1 < θ ≤ 2, the step length of τ is 1/ε ≤ 1. Therefore, we have

A(n) ≥ 2−ε
N∑
s=0

2−εs
(
d− 1 + s

d− 1

)
. (4.5)

By (3.4) we have

B(n) :=
N∑
s=0

2−εs
(
d− 1 + s

d− 1

)
= (1− t)−d

[
1− td+N+1

d−1∑
s=0

(
N + d

s

)(
1− t
t

)s] ∣∣∣∣
t=2−ε

.
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By the assumptions of the lemma 0 < 2−ε ≤ 1/2 and d − 1 ≤ (d + N + 1)/2. Applying
Lemma 4.3 gives

B(n) ≥ 1

2
(1− t)−d|t=2−ε =

1

2
(1− 2−1/(θ−1))−d. (4.6)

Combining (4.4) – (4.6) proves (4.3).

Remark 4.5 By using weaker assumptions we can prove the following slightly worse lower
bound compared to Lemma 4.4. If 1 < θ ≤ 2, then for any natural numbers d and n, there
holds true the inequality∑

k∈Idn

2|k|1 ≥ 2−1/(θ−1)2d−2(1− 2−1/(θ−1))−d2n.

Lemma 4.6 Let α, β, γ ∈ R satisfy the conditions 2(γ − β) ≥ α > γ − β > 0 and 1 ≤ ν ≤
d− 1. Then we have

(i) for any ξ ≥ (2α + δ)(d− 1),

dimV d(ξ) ≥ 1

4
2−ρ/δd

[
1 +

1

2ρ/δ − 1

]d
2ξ/δ,

(ii) for any ξ ≥ (2α + δ)(d− 1),

dimV d
∗ (ξ) ≥ 1

4
d(2ρ/δ − 1)−d2ξ/δ,

(iii) for any ξ ≥ (2α + δ)(ν − 1),

dimV d
ν (ξ) ≥ 1

4
2−ρ/δν

[
1 +

d

ν(2ρ/δ − 1)

]ν
2ξ/δ.

Proof. We first prove the second inequality in the lemma. Put θ := α/ρ and n := b(ξ −
α(d − 1))/δc. We have Jd∗ (ξ) ⊃ Idn. Since ξ ≥ (2α + δ)(d − 1), Condition (4.1) is satisfied.
Hence, by Lemma 4.4,

dimV d
∗ (ξ) =

∑
k∈Jd∗ (ξ)

2|k|1 ≥
∑
k∈Idn

2|k|1

≥ 2−1/(θ−1)d2d−2(1− 2−1/(θ−1))−d2n

≥ 2−1/(θ−1)d2d−2(1− 2−1/(θ−1))−d2(ξ−α(d−1))/δ−1

≥ 1

4
d(2ρ/δ − 1)−d2ξ/δ.
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For proving (i) we start similar as in the proof of Lemma 3.5 (see the first three equations
in (3.6)) and conclude by using the previous relation

dimV d(ξ) ≥
d∑

k=1

(
d

k

)
1

4
k(2ρ/δ − 1)−k2ξ/δ

=
1

4
2ξ/δ

d∑
k=1

d!

(d− k)!(k − 1)!
(2ρ/δ − 1)−k

=
1

4
2ξ/δ(2ρ/δ − 1)−1d

d−1∑
k=0

(
d− 1

k

)
(2ρ/δ − 1)−k

=
1

4
(2ρ/δ − 1)−1d[1 + 1/(2ρ/δ − 1)]d−12ξ/δ

=
1

4
2−ρ/δd[1 + 1/(2ρ/δ − 1)]d2ξ/δ .

(4.7)

Finally, we prove (iii) with a similar computation as done in (4.7). Indeed, we obtain

dimV d
ν (ξ) ≥

ν∑
k=1

(
d

k

)
1

4
k(2ρ/δ − 1)−k2ξ/δ

=
1

4
2ξ/δ

ν∑
k=1

(
ν

k

)
k
d!(ν − k)!

(d− k)!ν!
(2ρ/δ − 1)−k

≥ 1

4
2ξ/δ

ν∑
k=1

(
ν

k

)
k
(d
ν

)k
(2ρ/δ − 1)−k

=
1

4

d

ν
ν(2ρ/δ − 1)−12ξ/δ

ν−1∑
k=0

(
ν − 1

k

)(d
ν

)k
(2ρ/δ − 1)−k

=
1

4
(2ρ/δ − 1)−1d

[
1 +

d

ν(2ρ/δ − 1)

]ν−1

2ξ/δ

=
1

4
(2ρ/δ + d/ν − 1)−1d

[
1 +

d

ν(2ρ/δ − 1)

]ν
2ξ/δ

≥ 1

4
2−ρ/δν

[
1 +

d

ν(2ρ/δ − 1)

]ν
2ξ/δ .

Theorem 4.7 Let α, β, γ ∈ R satisfy the conditions 2(γ − β) ≥ α > γ − β > 0. Then, we
have
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(i) for any integer n ≥ α
δ
d2d(2α/δ+1)(1 + 1/(2ρ/δ − 1))d,

1

2ρ+3δ
dδ
(

1 +
1

2ρ/δ − 1

)δd
n−δ ≤ dn(Uα,β, Hγ)

≤
(α
δ

)δ
22ρ+δdδ

(
1 +

1

2ρ/δ − 1

)δd
n−δ,

(ii) for any integer n ≥ α
δ
d2d(2α/δ+1)(2ρ/δ − 1)−d,(1

8

)δ
dδ
(
2ρ/δ − 1

)−δd
n−δ ≤ dn(Uα,β

∗ , Hγ) ≤
(α
δ

)δ
22ρ+δdδ

(
2ρ/δ − 1

)−δd
n−δ,

(iii) for any integer n ≥ α
δ
ν2ν(2α/δ+1)(1 + d/(2ρ/δ − 1))ν ,

1

2ρ+3δ
νδ
(

1 +
d

ν(2ρ/δ − 1)

)δν
n−δ ≤ dn(Uα,β

ν , Hγ)

≤
(α
δ

)δ
22ρ+δνδ

(
1 +

d

2ρ/δ − 1

)δν
n−δ.

Proof. Due to Theorem 3.6, we have to prove the lower bounds in this theorem. Let us
prove the lower bound for dn(Uα,β, Hγ). The other lower bounds can be proved in a similar
way. It has been shown in the proof of Theorem 3.6 that the function ϕ(ξ) := dimV d(ξ)
in variable ξ satisfies (3.7) and (3.8). For a given n satisfying the condition in (i) of the
theorem, let ξm be the number such that

dimV d(ξm) ≥ n+ 1 > dimV d(ξm−1). (4.8)

Hence, by the corresponding restriction on n in the theorem it follows that ξ ≥ (2α+δ)(d−1).
By Lemma 4.6 and (3.8) we obtain

n ≥ 1

4
2−ρ/δd(1 + 1/(2ρ/δ − 1))d2ξm−1/δ

≥ 1

8
2−ρ/δd(1 + 1/(2ρ/δ − 1))d2ξm/δ,

or, equivalently,

2−ξm ≥ (1/2ρ/δ+3)δdδ
(
1 + 1/(2ρ/δ − 1)

)δd
n−δ. (4.9)

Consider the subspace B(m) := {f ∈ V d(ξ) : ‖f‖Hγ ≤ 2−ξm} in Hγ. By Lemma 4.2
B(m) ⊂ Uα,β and consequently, by Lemma 4.1 and (4.8)

dn(Uα,β, Hγ) ≥ dn(B(m), Hγ) ≥ 2−ξm .

The last inequalities combining with (4.9) prove the desired inequality.
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Theorem 4.8 Let α, β, γ ∈ R satisfy the conditions 2(γ − β) ≥ α > γ − β > 0. Then we
have

(i) for any ε ≤ 2−(2α+δ)(d−1),

1

2ρ/δ+2
d

(
1 +

1

2ρ/δ − 1

)d
ε−1/δ ≤ nε(U

α,β, Hγ) ≤ α

δ
22ρ/δd

(
1 +

1

2ρ/δ − 1

)d
ε−1/δ,

(ii) for any ε ≤ 2−(2α+δ)(d−1),

1

4
d(2ρ/δ − 1)−dε−1/δ ≤ nε(U

α,β
∗ , Hγ) ≤ α

δ
22ρ/δd(2ρ/δ − 1)−dε−1/δ,

(iii) for any ε ≤ 2−(2α+δ)(ν−1),

1

2ρ/δ+2
ν

[
1 +

d

ν(2ρ/δ − 1)

]ν
ε−1/δ ≤ nε(U

α,β
ν , Hγ) ≤ α

δ
22ρ/δν

[
1 +

d

2ρ/δ − 1

]ν
ε−1/δ .

Proof. Due to Theorem 3.7, we have to prove the lower bounds in this theorem. Let us
prove the lower bound for nε(U

α,β, Hγ). The other lower bounds can be proved in a similar
way. For a given ε ≤ 2−(2α+δ)(d−1), put ξ = | log ε|. Consider the set B∗(ξ) := {f ∈ V d

∗ (ξ) :
‖f‖Hγ ≤ 2−ξ} in the subspace V d

∗ (ξ) of Hγ. By Lemma 4.2 B∗(ξ) ⊂ Uα,β
∗ . Hence, by (4.12)

and Lemma 4.1 we have

dn(Uα,β
∗ , Hγ) ≥ dn(B∗(ξ), H

γ) ≥ 2−ξ = ε,

where n := dimV d
∗ (ξ)− 1. Therefore, by the definition and Lemma 4.6(ii),

nε(U
α,β
∗ , Hγ) ≥ dimV d

∗ (ξ)− 1

≥ 1

4
d(2ρ/δ − 1)−d2ξ/δ

≥ 1

4
d(2ρ/δ − 1)−dε−1/δ.

The last inequalities combined with (4.11) concludes the proof.

Remark 4.9 (a) Due to the exponentially growing d-dependence in the lower bound of The-
orem 4.7(i) we can not avoid the curse of dimensionality in this setting.

(b) Note, that in Theorem 3.6(ii), depending on ρ and δ, the constant
(
2ρ/δ − 1

)−δd
might

decay exponentially in d. However, the statement is given for n > Cα/ρ2
ρ/δd2αd/δ(2ρ/δ−1)−d

where α > ρ. Hence, if the constant decays exponentially one might have to wait exponen-
tially long (with respect to d). Therefore, the above result so far does not imply a break of
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the curse of dimensionality. In fact, this refers to the “footnote” in [22] on page 2224 where
the opposite is stated.

(c) In contrast to d we assume that ν is a fixed parameter. Due to the upper bound in
Theorem 3.6(iii) we can break the curse of dimensionality here.

(d) Based on Theorems 3.7 and 4.8, we have similar statements on the curse of dimen-
sionality in terms of nε. We mention here the related paper [27] discussing the intractability
of L∞-approximation of infinitely differentiable functions on Id.

4.3 The case α > γ − β = 0

Theorem 4.10 Let α, β, γ ∈ R satisfy the conditions α > γ − β = 0. Then the following
relations hold true.

(i) For any d ≥ 2 and n ≥ 2d

4−α[(1 + log e)(d− 1)]−α(d−1)n−α(log n)α(d−1) ≤ dn(Uα,β, Hγ)

≤ 4α
(d− 1

2e

)−α(d−1)

n−α(log n)α(d−1).

(ii) For any integer n ≥ 2d+1 and d ≥ 4,

4−α[(1 + log e)(d− 1)]−α(d−1)n−α(log n)α(d−1) ≤ dn(Uα,β
∗ , Hγ)

≤ 4α
(d− 1

e

)−α(d−1)

n−α(log n)α(d−1).

(iii) If in addition 4 ≤ ν ≤ d/2, then for any n ≥
√

5+3
2

(
d
ν

)(
2ν−1
ν−1

)
22ν+1,

4−α[(1 + log e)(ν − 1)]−α(ν−1)ν−ανdανn−α(log n)α(ν−1)

≤ dn(Uα,β
ν , Hγ)

≤ [2(
√

5 + 3)]α
(ν − 1

e

)−α(ν−1)(ν
e

)−αν
dανn−α(log n)α(ν−1) .

Proof. Due to Theorem 3.13, we have to prove the lower bounds in this theorem. Let us
prove the lower bound for dn(Uα,β, Hγ). The other lower bounds can be proved in a similar
way.

For a given n ≥ 2d+1, there is an unique m ≥ d+ 1 such that,

(d− 1)−(d−1)2m(m− 1)d−1 ≥ n+ 1 > (d− 1)−(d−1)2m−1(m− 2)d−1. (4.10)
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Hence, by the inequality a log e > log(1 + a), a ≥ 0, we obtain

m+ (d− 1)

(
m− 1

d− 1
− 1

)
log e ≥ m+ log

(
m− 1

d− 1

)d−1

≥ log(n+ 1),

and consequently,

m ≥ log(n+ 1) + d log e

1 + log e
,

From the last inequality and (4.10) we derive

2−αm ≥ 2−α(m−1)(d− 1)α(d−1)(m− 2)−α(d−1)2−α(d− 1)−α(d−1)(m− 2)α(d−1)

≥ 2−α(d− 1)−α(d−1)

[
log(n+ 1) + d log e

1 + log e
− 2

]α(d−1)

(n+ 1)−α.

We have (n + 1)−α ≥ 2−αn−α. Moreover, by the inequality d ≥ 2 + 2/ log e one can verify
that

log(n+ 1) + d log e

1 + log e
− 2 ≥ log n

1 + log e
,

and consequently,

2−αm ≥ 4−α[(1 + log e)(d− 1)]−α(d−1)n−α(log n)α(d−1) . (4.11)

From Lemma 3.8 and (3.11), we obtain

dimV d
∗ (αm) =

∑
k∈Kd

∗ (m)

2|k|1 ≥ (d− 1)−(d−1)2m(m− 1)d−1 ≥ n+ 1. (4.12)

Consider the set B∗(m) := {f ∈ V d
∗ (ξ) : ‖f‖Hγ ≤ 2−αm} in the subspace V d

∗ (αm) of Hγ.
By Lemma 4.2 we have B∗(m) ⊂ Uα,β

∗ . Hence, by (4.12) and Lemma 4.1 we obtain

dn(Uα,β
∗ , Hγ) ≥ dn(B∗(m), Hγ) ≥ 2−αm.

The last inequality combined with (4.11) finishes the proof of the desired lower bound.

Theorem 4.11 Let α, β, γ ∈ R satisfy the conditions α > γ − β = 0. Then the following
relations hold true.

(i) For any 0 < ε ≤ 2−αd,

1

2
[α(d−1)]−(d−1)ε−1/α| log ε|d−1 ≤ nε(U

α,β, Hγ) ≤ 4
(α(d− 1)

2e

)−(d−1)

ε−1/α| log ε|d−1.
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(ii) For any 0 < ε ≤ 2−αd and d ≥ 4,

1

2
[2α(d−1)]−(d−1)ε−1/α| log ε|d−1 ≤ nε(U

α,β
∗ , Hγ) ≤ 4

(α(d− 1)

e

)−(d−1)

ε−1/α| log ε|d−1.

(iii) If in addition 2 ≤ ν ≤ d/2 then for any 0 < ε ≤ 2−2αν,

1

2
[2α(ν − 1)]−(nu−1)ν−νdνε−1/α| log ε|ν−1

≤ nε(U
α,β
ν , Hγ) ≤ 2(

√
5 + 3)

(α(ν − 1)

e

)−(ν−1)

(ν/e)−νdνε−1/α| log ε|ν−1 .

Proof. Due to Theorem 3.14, we have to prove the lower bounds in this theorem. Let us
prove the lower bound for nε(U

α,β
∗ , Hγ). The other lower bounds can be proved in a similar

way. For a given ε ≤ 2−αd we take m ≥ d ≥ 4 such that

2−αm ≥ ε > 2−α(m+1) .

The right-hand inequality gives

2m ≥ 1

2
ε−1/α and m ≥ α−1| log ε| − 1.

Consider the set B∗(m) := {f ∈ V d
∗ (ξ) : ‖f‖Hγ ≤ 2−αm} in the subspace V d

∗ (αm) of Hγ.
By Lemma 4.2 it holds B∗(m) ⊂ Uα,β

∗ . Hence, by (4.12) and Lemma 4.1 we have

dn(Uα,β
∗ , Hγ) ≥ dn(B∗(m), Hγ) ≥ 2−αm ≥ ε,

where n := dimV d
∗ (αm)−1. Therefore, by Lemma 3.8, (3.11) and the inequality | log ε| ≥ 4α

we get
nε(U

α,β
∗ , Hγ) ≥ dimV d

∗ (αm)− 1

≥ 1

2
2m
(
m− 1

d− 1

)
≥ 1

2
(d− 1)−(d−1)(m− 1)d−1ε−1/α

≥ 1

2
(d− 1)−(d−1)(α−1| log ε| − 2)d−1ε−1/α

≥ 1

2
[2α(d− 1)]−(d−1)ε−1/α| log ε|d−1.

Remark 4.12 Note, that in [22] the authors did not prove any lower bounds for the di-
mensions of the optimized sparse grid spaces and the approximation error for the linear
approximation in Hγ of functions from the class Uα,β

∗ which is defined via a biorthgonal
wavelet decomposition. In our setting, the lower bounds are almost optimal and necessary
to clarify the curse of dimensionality issues.
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5 Biorthogonal wavelet decompositions

Let Φ := {ϕk,s}k∈Z+,s∈Qk and Φ̃ := {ϕ̃k,s}k∈Z+,s∈Qk be biorthogonal systems in L2, where
Qk := {s ∈ Z : 0 ≤ s < 2k}. We will assume that {ϕk,s}k∈Z+,s∈Qk forms a Riesz basis for
L2, that is ∥∥∥∥∥∥

∑
k∈Z+

ck,sϕk,s

∥∥∥∥∥∥
2

�
∑
k∈Z+

∑
s∈Qk

|ck,s|2.

Therefore, every f ∈ L2 has a unique representation

f =
∑
k∈Z+

∑
s∈Qk

(f, ϕ̃k,s)ϕk,s,

and there hold true the dyadic biorthogonal wavelet decomposition

f =
∑
k∈Z+

qk(f),

with the norm equivalence

‖f‖2 �
∑
k∈Z+

‖qk(f)‖2,

where
qk(f) :=

∑
s∈Qk

(f, ϕ̃k,s)ϕk,s

One of the most important cases of biorthogonal systems in L2 which has wide appli-
cations are wavelet biorthogonal systems. Univariate periodic wavelet biothogonal systems
Φ := {ϕk,s}k∈Z+,s∈Qk and Φ̃ := {ϕ̃k,s}k∈Z+,s∈Qk are of the form

ϕk,s(x) = ϕk(x− 2π2−ks), ϕ̃k,s(x) = ϕ̃k(x− 2π2−ks),

where {ϕk}k∈Z+ and {ϕ̃k}k∈Z+ are the sequences of mother wavelets which in particular, can

be received from the mother wavelets ψ and ψ̃ of univariate nonperiodic wavelet biothogonal
systems by the periodization formula

ϕk(x) =
∑
s∈Z

ψ(2k(x+ 2πs)), ϕ̃k(x) =
∑
s∈Z

ψ̃(2k(x+ 2πs)).

We assume the following conditions on Φ. There hold the Jackson type inequality

inf
g∈Σk

‖f − g‖L2 ≤ C2−mk‖f‖Hr ,
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for some m ∈ N, and the Bernstein type inequality

‖f‖Hl ≤ C2lk‖f‖L2 , f ∈ Vk,

for some l ≤ r with 0 < r ≤ m, where Vk := span{ϕk,s : s ∈ Qk}. We also assume that
similar inequalities hold for the dual system Φ̃ with parameters m̃ and r̃.

For distributions f and k ∈ Zd
+, let us introduce the following operator:

qk(f) :=
d∏
j=0

qkj(f)

where the univariate operator qkj is applied to f as a univariate function in variable xj while
the other variables are held fixed.

If f ∈ L2, we have

‖f‖2 �
∑
k∈Zd+

‖qk(f)‖2.

Let us use the notation Hα,β
∗ to denote the subspace in Hα,β of all functions f having the

biorthogonal wavelet decomposition

‖f‖2 �
∑
k∈Nd
‖qk(f)‖2.

The following lemma has been proved in [22].

Lemma 5.1 Let α, β ∈ R satisfy the restrictions 0 ≤ α < r and 0 ≤ α + β < r, where r
is the parameter in the Jackson and Bernstein type inequalities. Then there holds true the
following norm equivalence

‖f‖2

Hα,β
∗
�
∑
k∈Nd

22(α|k|1+β|k|∞)‖qk(f)‖2
L2
.

Lemma 2.1 and Lemma 5.1 show that functions f ∈ Hα,β
∗ have similar dyadic harmonic

and biorthogonal wavelet decompositions with the same equivalent norms. There are other
analogous decompositions of Hα,β

∗ not only for periodic functions but for non-periodic func-
tions defined on a d-dimensional cube. Indeed, we can treat spaces Hα,β

∗ as well Hα,β,
Hα,β
ν and classes Uα,β, Uα,β

∗ , Uα,β
ν in a more general form which are suitable for different

applications.

Let H be a separable Hilbert space and H have the following dyadic decomposition.
Namely, H is decomposed into pairwise orthogonal subspaces Wk, k ∈ Zd

+,

H =
⊕
k∈Zd+

Wk,
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with
dimWk = 2|k|1 .

Then every f ∈ H can be decomposed into a series

f =
∑
k∈Zd+

pk(f), pk(f) ∈ Wk,

with
‖f‖2 =

∑
k∈Zd+

‖pk(f)‖2.

We define Hα,β as the Hilbert space of formal series

f =
∑
k∈Zd+

pk(f), pk(f) ∈ Wk,

for which the following norm is finite

‖f‖2
Hα,β =

∑
k∈Zd+

22(α|k|1+β|k|∞)‖pk(f)‖2.

With this definition we have H0,0 = H. For α = 0, we put H0,β = Hγ for β = γ.

We define the subspaces Hα,β
∗ and Hα,β

ν , 1 ≤ ν ≤ d−1, in Hα,β as follows. The subspace
Hα,β
∗ is the set of all f ∈ Hα,β such that such that

pk(f) = 0 if
d∏
j=0

kj = 0.

The subspace Hα,β
ν is the set of all f ∈ Hα,β such that

pk(f) = 0 if |σ(s)| > ν.

Denote by Uα,β, Uα,β
∗ and Uα,β

ν the unit ball in Hα,β, Hα,β
∗ and Hα,β

ν , respectively. (For
convenience, here we use the same notations Hα,β, Uα,β, Uα,β

∗ , Uα,β
ν as in Section 2 for the

harmonic dyadic decomposition.) For the above defined function spaces and function sets
all the results in Sections 3 and 4 remain true.
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