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We construct and analyze sparse tensorized space-time Galerkin discretizations for boundary integral equations resulting
from the boundary reduction of nonstationary diffusion equations with either Dirichlet or Neumann boundary conditions.
The approach is based on biorthogonal multilevel subspace decompositions and a weighted sparse tensor product construc-
tion. We compare the convergence behavior of the proposed method to the standard full tensor product discretizations. In
particular, we show for the problem of nonstationary heat conduction in a bounded two- or three-dimensional spatial do-
main that low order sparse space-time Galerkin schemes are competitive with high order full tensor product discretizations
in terms of the asymptotic convergence rate of the Galerkin error in the energy norms, under lower regularity requirements
on the solution.
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1 Introduction

Numerical solution of parabolic evolution problems is required in numerous applications. Traditional numerical methods
are based on Finite Element or Finite Difference discretization in physical space combined with a suitable time stepping
approach in the time variable. Implicit time stepping methods (e.g. backward Euler or Crank-Nicholson) require solution
of a d-dimensional elliptic problem in every time step, whereas the explicit forward Euler scheme results in the strong
stability condition on the time steps h; < h2, where h; is the size of the time interval and h,, is the characteristic mesh size
in the spatial finite element mesh.

We refer to [13] and to the references therein for a survey of single-step, multi-step and Discontinuous Galerkin time
stepping schemes for abstract, parabolic equations. All timestepping schemes described in [13] are implicit and of finite
order in the timestep h;. These timestepping schemes reduce the parabolic problem to a sequence of elliptic problems to be
solved in the bounded spatial domain D C R?. If these problems have been solved by Finite Element Methods (FEM) on
a quasiuniform meshes of meshwidth ., and if their solution is performed in linear complexity, this entails, per timestep,
work of order O(h, %), i.e. the total work for solution is of asymptotic order O(h; 'h;?). Using the time-analyticity of
the semigroup generated by the parabolic evolution problem, in [9] an hp-discretization with respect to the time variable
with exponential convergence has been proposed; this approach, when combined with an optimal order multilevel solver
in the spatial domain, will reduce the total work to order O(h%|log h,|?). Recently, in [10], a completely different
approach based on a space-time compressive, adaptive Galerkin discretization of parabolic evolution problems on sparse
tensor products of multilevel spaces in the spatial domain has been proposed and analyzed. It has been shown in [10]
that this approach allows to reduce the total work to order O(h; %) while retaining the convergence rates of the previous
discretizations. In the present paper, we combine the idea of [10] with a boundary reduction of nonstationary heat equations
with homogeneous volume source which consists of the prior reduction to the “mantle” 3 of the space-time cylinder as
has been proposed earlier by [1, 3, 7] and recently, in the context of shape-sensitivity calculus, in [2]. Similarly to the
elliptic case [8], this approach leads to first and second kind boundary integral equations involving integral operators on
Y. Moreover, from [3, 7] it is known, that the heat single layer operator and the hypersingular first kind boundary integral
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operator for the heat equation are elliptic and continuous in appropriate anisotropic Sobolev spaces on Y. Remarkably, this
is not true for the domain heat operator. The coercivity of the boundary integral operators provides a basis for Galerkin
discretizations of the first kind boundary integral equations by means of space-time Galerkin Boundary Element Methods
(BEM), whose stability is ensured by the classical Lemma of Cea.

Due to ¥ = (0,7) x 9D, it is natural to use tensor product bases on X in Galerkin discretizations; full tensor product
discretization schemes for the weakly singular integral equations were analyzed in [1,3,7]. Positivity for the hypersingular
parabolic boundary integral operator of the first kind and the full Calderén projector for the heat equation was shown
in [3,7]. In both cases, for Finite Element spaces of fixed polynomial degree, the Galerkin error in the energy norm
decays as O((#dof )b/ (‘”1)) where the constant b > 0 depends only on the polynomial degree and is, in particular,
independent of the mesh size and of the spatial dimension d of the physical domain. For the physically relevant cases
d = 2 and d = 3, this results in low convergence rates, when expressed in terms of the number of degrees of freedom.
In this paper we introduce and analyze a new weighted sparse space-time Galerkin discretization spaces with the aim to
improve this unfavorable convergence behavior. Sparse-tensor space-time Galerkin discretization of heat potentials has
been introduced first in [2] for the case of the equal weight, and applied for numerical solution of the heat equation in
a randomly perturbed domain. In the present paper we show, in particular, that anisotropic sparse tensor product bases
can yield better convergence rates in terms of the number of degrees of freedom in the case d = 3. As a main result, we
prove that the Galerkin error of the sparse space-time discretization in the energy norm decays asymptotically at least as
O((#dof)*b/ (d’l)) up to logarithmic terms, where b>0is again a constant which is independent on the mesh size and
of the space dimension d > 2 which is a significant improvement compared to the convergence of straightforward full
tensor Galerkin discretizations of heat operator as were proposed in [3]. Using sparse tensor space-time multilevel bases
for the Galerkin discretization of first kind boundary integral operators for the heat equation allows therefore to realize
complexity gains of both, the boundary reduction by integral equation formulations and of the sparse tensor, compressive
space-time discretization proposed and analyzed recently in [10] for space-time discretizations without boundary reduction.
In particular, we show for the problem of nonstationary heat conduction in two- and three-dimensional spatial domain that
low order sparse space-time Galerkin schemes are comparable with high order full tensor product discretizations in terms
of the asymptotic convergence rate of the Galerkin error in the energy norm. We point out at this stage that the Galerkin
stiffness matrix of the space-time boundary integral operators is densely populated in general, due to the nonlocal nature
of these integral operators. Exponentially convergent matrix compressions based on Fast Multipole type methods for heat
potentials, such as a (suitably modified) fast Gauss transform (see, e.g. [4, 11, 12]), have to be employed in addition to the
Galerkin discretizations investigated here in order to obtain algorithms of complexity O(h, (d_1)| log h.|*). The analysis
of compression of the stiffness matrix is beyond the scope of the present paper, but can be accounted for straightforwardly
by a Strang-type perturbation argument, using the coercivity of the boundary integral operators.

The paper is organized as follows. In Sect. 2 we introduce the nonstationary heat equation with Dirichlet and Neumann
boundary conditions and set up the functional framework. In Sect. 3 we perform the boundary reduction of the volume
formulations and, using the direct and indirect approach, we derive the associated first kind boundary integral equations
whose solution is equivalent to the solution of the original nonstationary heat equations. In Sect. 4 we introduce sparse
space-time Galerkin discretization schemes for these BIEs and obtain the a priori error bounds. In Sect. 5 we compare the
complexity of the full and the presently proposed, new sparse space-time discretization schemes for the practically relevant
cases d = 2 and d = 3. In the Appendix we collect a technical Lemma on inclusion of different scales of anisotropic
Sobolev spaces.

Throughout, we use the notation f < g if there exists a constant C' > 0, independent on the parameters which f and g
might depend on, such that f < Cg. The relation f ~ g is equivalentto f < gand g < f.

2 Weak solution of the nonstationary heat equation

Let D ¢ R%, d > 2 denote a bounded domain with boundary I" := 9D and exterior unit normal vector field n which we
assume in this paper for simplicity to be smooth; most of our results hold for I' € C* for k being finite, but sufficiently large.
With T' > 0 we denote a fixed finite time horizon, I = (0,7") the time interval of interest, by = I x D the space-time
cylinder and by ¥ = I x 9D its “mantle”. For some ¢ € [0, T] we write D; := D x {t} and observe dQ = X UDyUDr. In
() we consider a linear nonstationary heat equation with either Dirichlet or Neumann boundary conditions. The Neumann
problem reads: given f : Q — Rand h: ¥ — R, find v : Q — R satisfying

(8t—A)u:f ill Q,
vu=h ond, (D
u=20 in DU.
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Here ~y; is the conormal derivative on Y. For classical solutions u € Cc? (@) we have y1u = 9,ulx. With these notations,
we can state the Dirichlet problem of the heat equation: given f : Q — Rand g : ¥ — R, find w : @ — R satisfying

(8t - A)U_} = f in Qa
Yow=g onk, 2)
w=0 1in Dy,

where g is the trace operator, i.e. yow = w|y. The question of well-posedness of (1), (2) has been addressed in the
fundamental article by Costabel [3]. In order to state these results we introduce first the functional analytic framework. For
r,s > 0 it is appropriate to work with the anisotropic Sobolev spaces

H"™(Q) == L*(I; H" (D)) N H*(I; L*(D)),  H"*(2):= L*(I; H"(T)) N H*(I; L*(T)) ©)

equipped with the graph norm, and their duals H "~ := (H"*)’. Note that they are well-defined for (r, s) € [-1,1] x R
if ' € C%! and for all , s € Rif ' € C°. The variational treatment of essential boundary and initial conditions requires
subspaces of H"™*((Q) with homogeneous boundary conditions

H™(Q) := {u|g :uw € H™*(R x D),u(t,x) =0fort < 0}, Hy*(Q):= L*(I; H;(D)) N H*(I; L*(D)),

Hy*(Q) = {ulg :u € Hy* (R x D),u(t,x) =0fort > T}, H"%(Q):=(Hy*(Q)), r— % ¥/

and analogously defined subspaces ﬁg’s(Q), H ™#(%), etc. Note that the inclusions of the subspaces are strict for r, s >
1/2, but become an identity if r, s < 1/2.

Theorem 2.1 [3, Lemma 2.21, see also (2.3)] For every f € L*(Q) and h € L*(I; H==(T')) there exists a unique
u e HY2(Q) satisfying (1).

Theorem 2.2 [3, Theorem 2.9] For every f € H4"2(Q) and g € H2'3(X) there exists a unique w € H2(Q)
satisfying (2).

3 Boundary reduction

In this section we reduce the Neumann and Dirichlet problems (1) and (2) to the “mantle” 3 of the space-time cylinder Q).
In particular, we observe that the boundary integral operators for the heat equation can be bounded and positive in one and
the same norm. Note that this property is not true for the heat operator itself. In this section we consider formulations (1),
(2) with homogeneous volume source term f = 0. In our exposition, we follow [3], see also [1,2,7]. Let

T 2
G(t,x) := (4|z|) "% exp (-LL) ), V() = %(1 + sign(t)) @)

be the fundamental solution of the heat equation. The following theorem provides the representation formula for the
solution of a homogeneous heat equation.

Theorem 3.1 [3, Theorem 2.20] Suppose v € HY2(Q) satisfying (0 — A)u = 0 in Q. Then there holds the
representation formula

u= Ko(mu) — Ki(yu) inQ, 5)

where for (to, zo) € Q the single layer heat potential K and the double layer heat potential K are defined by

Ko()(to,20) = [ o(t.0)Glto ~ t.00 — o) dors
(6)
K1(¢)(to, o) = /Ez/z(t,x)m@G(to —t,x9 — x)do, dt.

where 71 , denotes the conormal derivative applied in the point x.

Similarly to the elliptic case, single and double layer potentials satisfy the jump relations on the “mantle” 3 of the
time-space cylinder.
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1

Theorem 3.2 /3, Theorem 3.4] For all ) € H™ 2~ (X) and all p € H2"3(X) there hold the jump relations
[oKoy] =0, (V1 Koy] = =, [oK1e] = ¢, [11K1¢] = 0.

Theorem 3.2 implies that for every ¢» € H~ 2>~ (%) and for every ¢ € H 33 (X), the single layer operator V, the
hypersingular integral operator W, the double layer operator K and the related operator NV

1 1
Vip := o Kotp, We = -y Kip, Ko =y (K19)|g + 5o, Ny = 71 (Ko)|q — 51/1

2

are well-defined maps. Furthermore, V' and W are positive and define isomorphisms in anisotropic trace spaces:

Theorem 3.3 [3, Corollary 3.13] The single layer operator V : H~ 23 (%) — H23(X) is an isomorphism, and

ey > 05 V) Zevlvl} oy WEHTETI(E). @

The hypersingular integral operator W : H2 ' X)) — H-z4 (X) is an isomorphism, and

Gew>0: (e Wo) 2 ewlellyy o Ve e HEE(E). ®)

The analysis of the corresponding Calderdn projector implies in particular well-posedness of the direct (9), (11) and of
the indirect (10), (12) boundary integral formulations for the heat equation.

Theorem 3.4 The unique solution w € HV3 (Q) of the Dirichlet problem (2) with f = 0 can be represented
(@) asw = Koy — K19, where i) € H-2~i (X) is the unique solution of the first kind integral equation

1
Vl/):(§I+K)g. 9)

Then 1) = ~y1w on Y.

(b) as w = Ko, wherep € H eI (X) is the unique solution of the first kind integral equation
Vi =g. (10)

Theorem 3.5 The unique solution u € HYs (Q) of the Neumann problem (1) with f = 0 can be represented
(a) asu = Koh — Kyp, where p € H3i (X) is the unique solution of the first kind integral equation

We — (%sz)h. (11)

Then p = you on X.
b) asu = Kip, where p € H 301 (X) is the unique solution of the first kind integral equation
Weo=—h. (12)

Moreover, if I is sufficiently smooth, the integral operators in (9) — (12) are one-to-one mappings in the scale of spaces.

Proposition 3.6 ( /3, Proposition 4.3]) Assume that ' € C'*°. Then for any s > 0 the mappings

Vi Hosts(it0/2(m) o FitsGHe/2(n),
(;I+K) (;I N):  HetsGt)/2(x) o Hats(a+9)/2(%), (13)
W Hits(aHo)/2(x) — H-its(-3+9/2(x)

are isomorphisms.
The positivity (7) and (8) of V' and W provides the basis for analysis of Galerkin discretizations of (9) — (12).
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4 Space-time Galerkin discretizations of the first kind integral equations

The coercivity of (7) and (8) of the first kind boundary integral operators implies stability and quasioptimality of conforming
Galerkin approximations of (9) — (12) by the classical Ced lemma. For any closed subspaces X1, C X := H —31 (X) and
YV, CV:= H31 (X) the Galerkin equations: to find vy, € X, resp. 1 € Vr, such that

1
(e, Vo) = (nw, 9) VL € XL, (e, Vo) = (nr, (§I+ K)g) VL € X, (14)

(CL,Wer) ={CL,—h)  Y(L eV, (CL,Wer) = (L, (%I —N)h)  ¥Y(L €V, (15)

are uniquely solvable and the Galerkin solutions ¥y, € X, resp. ¢, € V, are quasioptimal:

vl
”U’ ¢L||H*%T*i(2)— cy WLEX H’l/) L” 75’71(2) (16)
lo—erlgae < 0 e - ol )y
H2'2(X) = cw (Leve H23 (%)

The key ingredient in efficient Galerkin approximation is therefore the proper choice of the discrete spaces Vr,, X7,. The
Cartesian product structure of the domain > = I x I' allows for a natural tensor product discretization of V', X with
piecewise polynomials. In particular, suppose

Xycxpc--cxf C“-CH_%(F), XSCXltC"'CXétf C“-CH_%(I),
’ ’ (17)
V§cVEC--CcVE - CHE(T), VicVic.--cViC---CcHi(l)

are the nested finite element spaces of piecewise polynomials of degree p,, p¢, g, q¢, respectively, which are associated to
a finite element mesh of refinement level ¢, ¢; with the mesh width h, ~ 27 %, h; ~ 27%. We remark that elements
of {VZE }e,>0 are globally continuous piecewise polynomial functions, whereas the other discrete families may contain
discontinuous functions. Galerkin discretizations based on full tensor product spaces have been considered in [1, 3,7]:

VL=Vi @V, X=X @X] (18)

for some fixed relation of the mesh widths (the optimal choice is ¢; = 20, i.e. hy ~ hi) and fixed, usually low polynomial
degrees. Along the lines of [7, Theorem 7.5] and [3, Proposition 5.3, Corollary 5.5] we obtain

Theorem 4.1 Suppose X;, = X ® let for some polynomial degrees p,,p. > 0. Then for the solution i €
HPatlpetl (X) of the weakly singular integral equation (9) or (10) and the Galerkin solution 11, € Xy, of (14) holds

19 = el p- gy S (BE + RO REH + BT[] s (), (19)

1 _1
2’4

where the total number of unknowns is Ny, := dim(X) ~ h;(dfl)htfl.

Corollary 4.2 Suppose in addition to the assumptions of Theorem 4.1 that g € H2P+T3:pe+3 (3),
hy ~h2 and p, < 2p; + 1. (20)

Then Ny, ~ hg (d+1) and there holds the bound

ot
Y —vell, g bty S S ha" 2 [ Ql petimeri(m)

p;d+31/2
SNy Yl meeen o (5, 21

+3/2

NNL_ o H9|‘H2pt+3,pt+%(2)'

Proof. The firstline of (21) follows directly from (19) and from the relations (20) yielding in particular h2=+1 > b? e+l
The second line of (21) follows from the inclusion H2(P:+1).(Pe+1)(¥}) < HP=+1LPe+1(3) and the third line from the
mapping properties of V and (31 + K) from Proposition 3.6 with s = 2p; + 5. O
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Theorem 4.3 Suppose Vi, = Vj @ VZ for some fixed polynomial degrees q, > 1, gt > 0. Then for the solution
pE Ht=tLlatl (X) of the hypersingular integral equation (11) or (12) and the Galerkin solution ¢, € Vr, of (15) holds

lo=wrllyg g S tha + ROl pras 1,001 () (22)

where oo = min{q, + 3,¢, +1— 4}, B =min{g + 2,¢ +1 — ﬁ}, = Z:Ll and N, := dim(Vy) ~ h;(dfl)h;l.

Corollary 4.4 Suppose in addition to the assumptions of Theorem 4.3 that h € H2artlacts (%),
he ~h2 and q, <2q; + 1. (23)

Then Ny, ~ h;(dﬂ) and we have the bound

w3
lo = orll 4 ) S8 @l arnerians)

7de+11/2

SNy el o ) (24)
_gx+1/2

~ N, ! Hh||H2‘“+1"“+%(E) .

Proof. By assumption, u < 2. Hence

1 1
2B2u5=u(qt+1)—§=qx+§=a
and the first line of (24) follows. The second line follows from the inclusion F/2(4:+1)-(a:+1) (%)) ¢ F+1.4:+1(%) and the
third line from the mapping properties of W and (%I — N) from Proposition 3.6 with s = 2p; + % and s = 2p; + % O

From (21) and (24) it is clear that the convergence rate of the Galerkin error when measured in terms of the to-
tal number of degrees of freedom, #dof, scales unfavorably with the space dimension d: the Galerkin error decays as
O((#dof)~t/(4+1)) where the constant b depends on the (fixed) polynomial degree and is independent of h, and d. In
what follows, instead of the standard full tensor product Galerkin discretization, we introduce a sparse space-time ten-
sor Galerkin discretization, and prove that it yields a milder dependence on d, namely O ((#dof)~*/(¢=1) again up to
logarithmic terms, under the provision of sufficient smoothness of the solution.

The sparse space-time tensor Galerkin discretization is based on the multilevel decompositions

Vi=Wi®---aWi, Vi=Wa oW, Xi=Vie o) Xi=Vao o). 25

Explicit biorthogonal spline-wavelet bases of the detail spaces W('), yé‘) are required for implementation, but are available,
see e.g. [6]. Utilizing the weighted sparse tensor product construction [5], we build the families {f/}j} L>0s {)? 7ir>o of
sparse space-time tensor subspaces from (25) by

Vi= QR WLeWwicv=HPI(R), Xf= & Y, eV cxX=H1Ti(D) Q6
ly/o+L,o<L by/o+Llyo<L

for suitable fixed parameters 0 < ¢ < oo. The corresponding to X 7 and f/g Galerkin solutions of (14), (15) will be
denoted by 1[) 1, and ¢, respectively. From (16), the rate of convergence of sparse Galerkin solutions will be determined by
the consistency order of the sparse subspaces X 7 and f/g for solutions % and ¢ being sufficiently smooth.

In [2], sparse space-time tensor Galerkin discretizations with equal weight o = 1 have been first introduced and ana-
lyzed. As we will see below, the results in [2] can be somewhat improved for the case d = 3, where o0 = V2 yields better
convergence rates.

We concentrate first on the hypersingular integral equations (11) and (12) and their sparse space-time Galerkin approx-
imations (15) based on the sparse tensor product spaces f}fL’ We recall [5, Theorem 7.1] ensuring existence of é I € f/g
satisfying

lo=Cell 3y S N7 (08 No)? ol sz s @n

54
LRI

forevery 1/2 < s, < q» +1,1/4 < 5, < ¢ + 1 and Ny, = dim(V7). Here H* (I x T') := H"(T') ® H*(I) can be

— mix

understood as a space of “square integrable mixed highest derivatives”, see e.g. [5] and references therein. In what follows
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we also need the space H® (I x T') := H" (") ® H*(I) whose elements satisfy the homogeneous initial conditions. Note
that H> (¥) = H,>> (X) if 0 < s < 1. The exponent « in the leading order term in (27) is given by

mix mix

~ min{(s; — %), (s¢ — %)02}
“= max{d — 1,02} (28)

where (d — 1) is the dimension of the domain boundary I' = 9D. Simple calculations show that « attains its maximum if

o? is between (d — 1) and (s, — 1)/(s¢ — 1) and is equal to

Omax = min { (s, — 3)/(d—1), (s, — 1)} . (29)

We fix the value v := s; — i and seek for the smallest s, (and accordingly for the largest space Héﬁf” (X)) so that (27)

holds with highest rate & = apax = v. Obviously, s, = (d — 1)v + 3, yielding @ = v and 0 = d — 1. In this case
B=v+ % There holds
. ) ~(d—1)v4 3w+
Theorem 4.5 Suppose I is sufficiently smooth and ¢ € H (%) for

mix

gz +1/2 3
= = > — —.
v 11 and q>v 1 (30)

The error of the sparse Galerkin solution ¢, € \}LV =1 admits the bound
R v & optd
= Bul1.4 ) S N Q08 KLY gl a s s - 31)

Proof. For the anisotropic spaces (3) being intersection spaces, we obtain

o = Cellyit gy = 19 = Cell gt oy + 19 = el rpme

R T CRr (32)
<lle=Coll 11 .
Sle el 3y,

We choose s, := g, + 1, yielding the first relation in (30), and estimate the right-hand of (32) side by (27). O

d+Hv
2

Corollary 4.6 Suppose U is sufficiently smooth, that h € H(d+Dv, (X) and v, q., q; satisfy (30). Then

~ N —V 7 \v+a
lo =@l y3.4 ) S Ny (log Np)” ™ IIhllH(dH)u,@(E) : (33)

Proof. There holds H*> (X) ¢ H® (X) when k > a + 2b, see Lemma 5.2 below. Hence for k = (d + 1)v + 1

le =20l 38 ) S N2 08 N T2 [l g - (34)
Then the assertion follows by Proposition 3.6, since the mappings
- ~ - 1 ~ o ~
W:H’“g(E)%H”’f(E), (ilfN):H“E(E)%HT@(E), r=k—1 (35)

are isomorphisms for 7 > 1 yielding ||¢|| forr = (d+ 1)v. O

Hk,%(z) S ||h||H7'v§(E)
Construction of a suitable projector 7z, for the solution v of the single layer equations also relies on an Aubin-Nitsche

duality argument: we assume 1) € L*(X) and denote by ﬁi CLA(R) = X 7 the L?(X)-orthogonal projection. Then

- (¥ =119, 8) 12(s ( =TI, £ = T17E) 12(x
L L L E = swp L LS )
centie  Mlaiie, cerdi(z) €M1 s

ceH (D) ||§HH%%(E)

(36)
< v = T L2y
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10 A. Chernov and Ch. Schwab: Sparse space-time Galerkin BEM for the nonstationary heat equation

By [5, Theorem 4.3], for 0 < s, <p, +1land0 < s, <ps +1

min{s,, s;0?}

7o s £ o 7 \B _
1€ = U7&lL2@) = éng/fx?g 1€ = €ellrz(@) S Np *(log NL)[[€]| oo =t () for v = max{d — 1,02} (37
and some 3 > 0. The exponent « attains its maximum for o2 between (d — 1) and s, /s; and equals
Olmax :min{sx/(d— 1),3,5}. (38)

For fixed 1 := s; and s, = (d — 1) we have & = oy = o When 02 = d — 1. In this case 8 = p + % Moreover,
HE5(S) ¢ HE Y998 for k > (d + 1), see Lemma 5.2 below. This yields for the particular values &k := 1 and

mix

w:=1/(2(d + 1)) the estimate

€ = E8llee) o ==y 10 N, ysremy 4 (39)

sup
et Flatie

Combining this with (36) and (37) we obtain the following convergence estimate.
Theorem 4.7 Suppose i) € ﬁ]ﬁﬁ;l)“’”(E) for 1, p, pe satisfying
_ pet1
H - d _ 1 )

and py+12>p. (40)

The error of the sparse tensor Galerkin approximation 12] LeX I =1 udmits the bound

19 = ell 43 ) S N2 Qog N ya—vn s, (41)
where
A=u+1={pm+g’ =2 42)
2(d+1) Be 3 d=3.

Proof. The first term in the right-hand side of (36) admits the bound
A A o 1
19 = 79[| L2y S Ny ¥ log(Np )2 ||1/)HHx<nd;1>u,u(E)7 (43)
the second in bounded by (39). Combination of the two estimates yields the assertion with the exponent A from (42). [

Corollary 4.8 Suppose g € H"% (X) and r, 1, \, ps, py satisfy (40), (42) and

d+1
r= e+ (44)

Then the error of the sparse Galerkin solution 7,/; LEX éd_l) admits the bound

19 = dell 43 ) S N Q0g N gl g 5 (45)
Proof. We utilize H*% (%) ¢ HY_ V" () for k = (d + 1)p, see Lemma 5.2 below, and j1 = etl yielding
d+1
||¢||H[(ji;1>“=“(g) S ||1/}||Hk,§(2)7 k= m(pr + 1) : (46)

The assertion follows from Proposition 3.6 yielding that the following mappings are isomorphisms for r > %:
Sk . 1 ~ ~ T
Vi HR3(R) = B3 (S), (1 +K): H3(2) » H'3(8),  r=k+1. 47)

O
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Table1 Convergence parameters of the full and sparse tensor product discretizations for the weakly singular integral equations (9), (10).

V', Full tensor product, d = 2 V', Sparse tensor product, d = 2
(Paspe) || 7= 2B | e =2p, +3 | pp <2p, +1 (pospt) || V=Pt 5 | r=3p. +4 pe < i
(0,0) 1 3 true (0,0) z 4 true
(1,0) s 3 true (1,0) - - false
(1,1) s 5 true (1,1) 3 7 true
(3,1) s 5 true (3,1) — — false
V', Full tensor product, d = 3 V', Sparse tensor product, d = 3

(PasDt) 72% r=2p+3 | px <2p+1 (pospt) || v=B+2 | r=2p,+3 | po <2p, +1

(0,0) 3 3 true (0,0) s 3 true
(1,0) : 3 true (1,0) g 5 true
(1,1) s 5 true (1,1) g 5 true
(3,1) g 5 true (3,1) a 9 true

5 Discussion: Sparse space-time tensor product vs. full tensor product BEM

In Table 1 we summarize the results of Corollary 4.2 and Corollary 4.8 on convergence of the full and sparse space-time
Galerkin solutions for the weakly singular integral equations (9) and (10). The convergence estimates (21) and (45) have
the form

&) S N (log Ny)

2

1Y = ol ,-1.-1 Mgl g5 (s
where ¢, € {¢r,%r}, No € {N,Nz} and 5 € {0,~ + 1}. In Table 1 we list the values ~,  and the restriction on
polynomial degrees for practically relevant cases d = 2 and d = 3.

We observe that the sparse tensor product approximation achieves significantly better convergence rates than the full
tensor product approximation for the same choice of polynomial degrees (p,, p¢). But this comes at the price of stronger
regularity assumptions on the data ¢ € H™3(X): e.g. r = 4 instead of r = 3 for (p,,p;) = (0,0) and r = 7 instead
of r = 5 for (py, p:) = (1,1). The convergence parameters for (p;,p:) = (1,0) and (3, 1) are not shown, because these
combinations violate the restriction p, < p;.

Analyzing the diagonal entries of Table 1 we find e.g. that in the case d = 2, the simplest sparse tensor approximation
with (p,,p:) = (0,0) achieves an asymptotic convergence rate vy = % which is higher than the rate obtained by the full
tensor product approximation with (p,,p;) = (0,0) and (1,0), yielding the rates v = 3 and v = % respectively; it
is outperformed only by the full tensor product approximation with (p,,p;) = (3,1), however, at the price of a higher
regularity assumption on the data (r = 5 instead of » = 4). In the case d = 3, the lowest order sparse approximation
achieves essentially (i.e., up to logarithmic terms) the same convergence rate as the full tensor product approximation with
(P> pt) = (1,0) (v = 3); the sparse tensor discretization with (p,,p;) = (1,0) yields the same rate as the full tensor
product approximation with (pg,p¢) = (3,1) (y = 2).

In Table 2 we summarize the results of Corollary 4.4 and Corollary 4.6 on convergence of the full and sparse space-time
Galerkin solutions for the hypersingular integral equations (11) and (12). The convergence estimates (24) and (33) have the
form

I = Belly-3.-4 g S N5 (08 Ne) bl

where 31, € {¢r, ¢}, N € {Nr, Ny} and 5 € {0, + 1}. The relation of the convergence parameters is similar to the
case of the weakly singular equations discussed above. We sum up our findings.

Remark 5.1 For diffusion in a bounded, two and three-dimensional domain, the lowest order sparse tensor product
approximation outperforms or matches (up to logarithmic terms) the convergence rate of the lowest and the first order
approximations by the full tensor products. It does not require stronger regularity assumptions on the data (the case
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Table 2 Convergence parameters of the full and sparse tensor product discretizations for the hypersingular integral equations (11), (12).

W, Full tensor product, d = 2

W, Sparse tensor product, d = 2

(@orae) || v=252 | r=2¢,+1 | ¢, <2¢; +1 (Gorqt) || Y=o +35 | 7=3(+3) &< q
(1,0) % 1 true (1,0) - - false
(1,1) i 3 true (1,1) s 2 true
(3,1) % 3 true (3,1) - - false

W, Full tensor product, d = 3 W, Sparse tensor product, d = 3

(@ @) || v= 252 | r=2¢+1 | ¢u < 2g +1 (@, @) || 7= 252 | r=2¢,+1 | ¢ <2g+1
(1,0) 3 1 true (1,0) s 3 true
(1,1) 3 3 true (1,1) 3 3 true
(3,1) z 3 true (3,1) z 7 true

d = 2, (gz,q:) = (1,1) is an exception). Consequently, for sufficiently smooth data, either the lowest/first order sparse
discretization or higher order full tensor product should be chosen to ensure a favourable convergence rate of the Galerkin
scheme. The final choice of the discretization depends on the implementation complexity of the low order sparse- or the
high order full tensor product method, respectively.

Appendix
We prove the following technical lemma.

Lemma 5.2 For a,b, k > 0 there holds H*2 (91 x Q) € H®? () x Q3) if k > a + 2b.

mix

Proof. Suppose 2 = R™, 5 = R". Then
el s, oy = / / (1+ €)1+ |7 Ful? drde

k
Il oy = [ (IR (1 7)) P
where Fu is the Fourier transform of « with respect to all variables. By Young’s inequality

L+[E)® (1 + |72 11
(lgPyr | Ol 1 1

p q P q

1+ [P+ |7’ <

The assertion follows for & > kg where kg = ap and kg = 2bg. Solving this system we obtain kg = a + 2b. The
assertion for bounded domains with a smooth boundary follows from this result by suitable prolongation and restriction
operators. [
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