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Abstract

We discuss the connection between the theory of quarkonial decompositions for
function spaces developed by Hans Triebel, and the multilevel partition of unity
method. The central result is an alternative approach to the stability of quarkonial
decompositions in Besov spaces Bs

pp(IR
n), s > n(1/p− 1)+, which leads to relaxed

decay assumptions on the elements of a quarkonial system as the monomial degree
grows.
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1 Introduction

This note is motivated by the similarities between the concept of subatomic or quarkonial
decompositions introduced by Triebel [21, 22, 23] for the study of function spaces, and
numerical approximation schemes based on locally enriched partition of unity functions.
Although variants of the partition of unity method (PUM) have appeared under var-
ious names (meshless particle methods, generalized finite element methods, hp-clouds,
to name a few) before and independently, the PUM has formally been introduced by
Babuska and Melenk [11]. Its combination with multiscale approaches is usually refered
to as multilevel partition of unity method (MPUM), see Schweitzer [17]. The MPUM can
be considered as a merger of spectral and multiscale approximation schemes, and offers
great potential and flexibility for developing adaptive schemes necessary for large-scale
modeling and computation. However, it is fair to say that the theoretical understanding
of PUM and MPUM methods is not as complete as that of multiscale finite element
and wavelet methods [5, 6, 12, 18], on the one hand, and of spectral methods [3], on the
other. In particular, the parallel developments on quarkonial decompositions in function
space theory have not been taken notice of.

We start by recalling a result by Triebel [21, 22] on the existence of quarkonial frames
for Besov-Hardy-Sobolev spaces. To keep the exposition simple, and stay close to the
needs of MPUM theory, we concentrate on the case of Besov spaces Bs

p := Bs
p,p(IR

n) on
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IRn, n ≥ 1, with parameters 0 < p ≤ ∞, and s > σp = max(0, n(1/p − 1)). Various
concrete but equivalent definitions of Bs

p will be given later, for this introduction it is
sufficient to recall that Bs

2 = Hs(IRn) and Bs
∞ = Cs(IRn) represent the classical Sobolev

and Hölder-Zygmund classes, respectively. Quarkonial systems

Q := {qγj,i(x) := wγj,i(x− xj,i)γφj.i(x) : γ ∈ ZZn+, i ∈ Ij, j ≥ 0} (1)

are enumerated by three indices, the scale parameter j, the position parameter i ∈ Ij
within each scale, and the multi-index γ ∈ ZZn+ representing the degree of the monomial
factor. They are associated with point clouds Xj = {xj,i : i ∈ Ij} (approximate
lattices of mesh-width ≈ 2−j), and a subordinated partition of unity (PU) {φj,i : i ∈ Ij}
consisting of locally supported, sufficiently smooth functions:∑

i∈Ij
φj,i(x) ≡ 1, x ∈ IRn. (2)

”Approximate lattice of mesh-width ≈ 2−j” means that for some constants c, C we have

min
i 6=i′

dist(xj,i, xj,i′) ≥ c2−j, ∪i∈IjBC2−j(xj,i) = IRn, (3)

and ”locally supported, sufficiently smooth PU” means that suppφj,i ⊂ BC2−j(xj,i), the
φj,i are uniformly bounded on IRn, and belong to C ŝ for some positive ŝ > s, and all
i ∈ Ij and j ≥ 0 (uniform boundedness is automatic in conjunction with (2) if we assume
φj,i ≥ 0 which is often the case by construction). Here and in the following, c, C denote
positive constants that do not depend on the involved functions and parameters j, i, γ
(but may depend on other parameters such as n, p, s, ŝ, . . ., we also allow them to change
from line to line), we write A ≈ B if cA ≤ B ≤ CA, and Br(a) = {x ∈ IRn : |x−a| ≤ r}.
Finally, the scaling factors wγj,i > 0 are determined such that for some ρ > 0, we have

max(2−js‖qγj,i‖Bsp , ‖q
γ
j,i‖Lp) ≤ C2−ρ|γ|, γ ∈ ZZn+ (|γ| = γ1 + . . .+ γn). (4)

A special but prominent case of these definitions is the shift-invariant case, where Ij =
ZZn, Xj = 2−jZZn, and φj,i(x) = φ(2jx− i) is generated by a single, compactly supported
φ ∈ B ŝ

∞ satisfying ∑
i∈ZZn

φ(x− i) ≡ 1.

With these definitions at hand, the results from [22] (see also Theorem 1.39 in [23])
imply the following

Theorem 1 Let Q be a quarkonial system as in (1) with the properties specified above
(including the normalization condition (4)). Then, for any ρ > 0, 0 < p ≤ ∞, and
σp < s < ŝ, the system Q is stable in Bs

p, in the sense that any f ∈ Bs
p possesses a

representation

f(x) =
∑
γ∈ZZn+

∞∑
j=0

∑
i∈Ij

λγj,iq
γ
j,i(x) (5)
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(unconditional convergence in S ′ and Lmax(1,p)) such that

‖λ‖bsp :=


(
∑
γ∈ZZn+

∑∞
j=0

∑
i∈Ij 2jsp|λγj,i|p)1/p, 0 < p <∞,

supγ∈ZZn+, j≥0, i∈Ij 2js|λγj,i| p =∞,
(6)

is finite. Moreover,
‖|f‖| := inf

(5)
‖λ‖bsp ≈ ‖f‖Bsp (7)

represents an equivalent norm on Bs
p.

For simplicity, we speak of norms also for p < 1, even though in this case we have only
quasi-norms. Note that the original theorems in [21, 22, 23] cover the general case of
Bs
p,q and F s

p,q spaces, and use a slightly different but essentially equivalent definition of
the norm (7) and the scaling coefficients wγj,i. Actually, [22] and [23, Corollary 1.42]
also state the existence of a dual system {Φγ

j,i ∈ S(IRn) : γ ∈ ZZn+, i ∈ Ij, j ≥
0} such that λγj,i(f) := 〈f,Φγ

j,i〉S′×S yields an admissible representation (5) for f , and
‖λ(f)‖bsp ≈ ‖|f‖|p. In other words, Q is a Banach frame for Bs

p in the sense of [4, 10] if
1 ≤ p ≤ ∞. However, we will not make use of the existence of a dual system, and stick
to the formulated version of stability expressed by the norm equivalence (7). We should
also note that similar characterizations are available for Besov-Hardy-Sobolev spaces on
domains Ω ⊂ IRn [22], and that one of the purposes of introducing quarkonial systems
was their use to define function spaces over more general sets such as d-sets and more
general quasi-metric spaces.

The relevance of the stability property for numerical purposes is as follows: If we
work with numerical approximation schemes using linear combinations of the elements
of a stable system, we get access to information on the coefficient sequence λ which via
the norm equivalence can be related to various norms of the residual or the numerical
approximants. For instance, such a posteriori estimates are handy in adaptive schemes.
Moreover, in the most important case p = 2 the frame property is equivalent to saying
that a symmetric elliptic operator equation with energy space Hs = Bs

2 can be turned
into an equivalent, infinite linear system on `2 with bounds on its generalized condition
number. This property is important for the construction of fast and efficient solvers for
such operator equations. Results in this direction are discussed in, e.g., [18], mostly for
wavelet systems and closely related multilevel frame systems for which there is no or
little redundancy in the admissible representations (5). More redundant representation
systems, such as quarkonial systems, have not yet been touched to any generality.

Let us briefly introduce the fundamental ideas of PUM and MPUM. We do this for
IRn, and follow [11, 17]. The PUM is based on two ingredients. First, we assume the
existence of a PU {φi : i ∈ I},∑

i∈I
φi(x) ≡ 1, x ∈ IRn,
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consisting of sufficiently smooth functions φi subordinated to a finite-overlap open cover
{Ωi} of IRn, i.e., Ωi are bounded open subsets of IRn such that

∪i∈IΩi = IRn, sup
x∈IRn

#{i ∈ I : x ∈ Ωi} ≤ C, supp φi ⊂ Ωi.

Second, for each i, we choose an appropriate finite- or infinite-dimensional function space
Vi on Ωi (called local enrichment space), and define the associated PUM space as

V = {
∑
i∈I

φi(x)vi(x) : vi ∈ Vi, i ∈ I}.

In practice, the construction of the PU often starts with a point cloud X = {xi : i ∈ I},
then fixes a finite-overlap open cover {Ωi} consisting of balls, rectangular domains, or
direction-dependent ellipses centered at xi, and sets

φi(x) = (
∑
i′∈I

ψi′(x))−1ψi(x),

where the functions ψi are sufficiently smooth and satisfy suppψi = Ω̄i and ψi(x) >
0, x ∈ Ωi, see [7, 8, 9, 17, 24] for examples. An alternative is the use of a finite
element PU consisting of Lagrange finite element nodal basis functions (e.g., piecewise
linear hat functions) with respect to a simplicial partition of the domain of interest, such
versions of the PUM are refered to as GFEM or XFEM (generalized or extended finite
element method, see [1]). On tensor-product partitioned domains, PUs generated from
B-splines are a popular choice.

Although problem-adapted local enrichment spaces Vi are definitely of interest (see
[11]), in this paper we will only consider Vi generated by polynomials. The spaces Vi are
typically given by an appropriate basis or generating system, the choice of which can
make a big difference in practical implementations. Choosing monomials centered at xi
for generating Vi provides the link to quarkonial systems, see below. Combined with a
partition-based, finite element type PU this is almost equivalent to the hp-finite element
method (hp-FEM) [2], see [16] for a comprehensive treatment of the latter. Note that
the approximation theory of the hp-FEM is by no means elementary.

So far, no explicit restrictions on the support sizes of the φi have been imposed, thus
allowing for rather non-uniformly spaced point clouds X and globally non-uniform covers
{Ωi}, this feature is also used in hp-FEM methods. From now on we restrict ourselves to
quasi-uniform covers represented by approximate lattices Xj of mesh-width ≈ 2−j and
PUs {φj,i : i ∈ Ij} as specified for Theorem 1, j ≥ 0. To indicate the dependence on j,
we add the subscript j whenever necessary for clarification. Assuming quasi-uniformity
does not represent a significant loss of generality, as general PUM spaces can be well-
approximated by piecing together local parts of PUM spaces with quasi-uniform covers
of different mesh-widths, and allows us to directly see the connection to the quarkonial
case. Indeed, if we choose

V k
j,i = span{(x− xj,i)γ : |γ| ≤ k}, k ≥ 0,
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or the closure of limk→∞ V
k
j,i in an appropriate function space as the local enrichment

spaces Vj,i, then we get PUM spaces V k
j and Vj, respectively. The sequence V k

j is
monotone with respect to k:

V 0
j ⊂ V 1

j ⊂ . . . ⊂ V k
j ⊂ V k+1

j ⊂ . . . ⊂ Vj. (8)

Unfortunately, monotonicity with respect to j for fixed k,

V k
0 ⊂ V k

1 ⊂ . . . ⊂ V k
j ⊂ V k

j+1 ⊂ . . . , (9)

holds only in special cases, e.g., if the underlying sequence of PUs is refinable, i.e., any
φj,i can be expressed as a linear combination of PU functions φj+1,i′ from the next finer
scale, j ≥ 0. Note that the ladder {V k

j }j≥0 represents a particular instance of MPUM
spaces, more general examples can be obtained by replacing k in the definition of the
local enrichment spaces V k

j,i by a variable degree parameter kj,i, see [17]. If (9) holds and
a certain Bernstein inequality for V k

j can be established then for k > s the Besov space
Bs
p coincides with an approximation space with respect to the ladder {V k

j }j≥0, a result
that implies that the truncated and Lp normalized quarkonial system

Q̃k := {q̃γj,i(x) := w̃γj,i(x− xj,i)γφj.i(x) : |γ| ≤ k, i ∈ Ij, j ≥ 0}, ‖q̃γj,i‖Lp ≈ 1, (10)

is stable in Bs
p in the same sense as stated in Theorem 1, albeit with constants in the

norm equivalence that depend on the value of k > s. This dependence of the stability
bounds on k is typically algebraic, and not exponential.

This observation explains to a certain extent why the stability of the quarkonial
system Q stated in Theorem 1 is not as surprising, as we thought initially. Indeed, since
already the truncated version Q̃k0 for k0 = [s] + 1 is stable in Bs

p, there is no need in
adding more elements to it at all! In other words, if we insist on including additional
quarkonial functions with |γ| > k0 into Q̃k0 , we can easily afford this by scaling them
with weights sufficiently close to zero. Indeed, the influence of a term with |γ| > k0 and
small weight on the norm in (7) gets penalized since a significant contribution in (5)
is then possible only with a large coefficient λγj,i which is detrimental to realizing the
infimum in (7). Due to the expected algebraic growth of the constants in the stability
estimate for Qk, assuming exponentially decaying weights leading to (4) is more than
enough, and gives room for weakening (4). As the main technical contribution of this
paper, we outline an alternative proof of Theorem 1 under a weaker decay condition than
(4) but at the expense of additional restrictions on the PUs. The crucial moment is to
establish a reasonably sharp Bernstein estimate for the Bs

p norm of elements from V k
j by

their Lp norm. Detailed statements will be given in the next two sections, due to space
limitations some results are only proved for n = 1. The discussion of the application of
this result, its relation to the hp-FEM, and why we believe that the obtained weakening
of (4) is relevant, is beyond the scope of this paper. We admit that the partial results
presented here are rudimentary, and rather view them as an invitation to help shape the
theory of PUM and hp-FEM further.
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2 Abstract Framework

This is a more abstract version of our approach to proving Theorem 1. We restrict
ourselves to the case 0 < p <∞, with some changes in the definitions results and proofs
carry over to p =∞. Let a ladder {V k

j } be given such that (8) is satisfied. Assume that
there are ŝp > σp and k0 such that the following estimates hold:

(J) For any f ∈ Bs
p, there exists a decomposition

f =
∞∑
j=0

vk0j , vk0j ∈ V k0
j , (

∞∑
j=0

2jsp‖vk0j ‖
p
Lp)

1/p ≤ C‖f‖Bsp . (11)

Convergence of this representation is unconditional in S ′ and Lmax(p,1).

(B) For all k ≥ k0, j ≥ 0, σp < t < ŝp, and vkj ∈ V k
j , we have the Bernstein-type

inequality
‖vkj ‖Btp ≤ CAk,t2

jt‖vkj ‖Lp . (12)

Note that we require the Jackson-type inequality (11), i.e., the existence of a ”good”
decomposition, only for k0, it follows from the monotonicity assumption (8) that a
similar statement trivially holds for k ≥ k0. In (12) the constant Ak,t incorporates
the dependence on k. Instances of {V k

j } related to quarkonial systems for which these
assumptions hold will be given below.

Proposition 1 Let the ladder {V k
j } satisfy (8), (J), and (B). Then for k ≥ k0

‖|f‖|p,s,k := inf
vkj ∈V

k
j : f=

∑∞
j=0

vkj

(
∞∑
j=0

2jsp‖vkj ‖
p
Lp)

1/p (13)

represents an equivalent norm in Bs
p, σp < s < ŝp. More precisely, one has

c‖|f‖|p,s,k ≤ ‖f‖Bsp ≤ Ct(1 + Ak,t)‖|f‖|p,s,k, f ∈ Bs
p, (14)

for fixed t ∈ (s, ŝp).

Proof. The lower bound in (14) is a direct consequence of (J) and (8). For the upper
bound we use the well-known characterization of Bs

p via differences [20, Section 2.5.12]:
For 0 < p <∞ and σp < s < m,

‖f‖Bsp := ‖f‖Lp + (
∞∑
l=0

2lspωm(2−l, f)pLp)
1/p (15)

can serve as the definition of the norm in Bs
p. Here, the moduli of smoothness of order

m are defined by

ωm(δ, f)pLp = sup
h∈Bδ(0)

‖∆m
h f‖

p
Lp , δ > 0, f ∈ Lp(IRn).

6



In this definition, the supremum over the ball Bδ(0) can easily be replaced by appropriate
integral averages, leading to equivalent moduli and other equivalent norms in Bs

p (this
technical remark comes in handy when proving Jackson-type inequalities for schemes
based on local polynomial approximation, see the proof of Lemma 1). Now, take any
Lp convergent decomposition f =

∑∞
j=0 v

k
j . Consider the case 1 ≤ p <∞. Then, for an

arbitrarily picked s < t < ŝp, we have

ωm(2−l, f)Lp ≤
∞∑
j=0

ωm(2−l, vkj )Lp

≤ C(
∑
j<l

2−lt‖vkj ‖Btp +
∑
j≥l
‖vkj ‖Lp)

≤ C(Ak,t
∑
j<l

2−(l−j)t‖vkj ‖Lp +
∑
j≥l
‖vkj ‖Lp),

where in the first step the definition of the Bt
p norm for vkj , j ≤ l, and ωm(δ, vkj ) ≤

2m‖vkj ‖Lp for j > l have been used. The last step is justified by (B). For l = 0, the
right-hand side of this inequality also majorizes the term ‖f‖Lp .

It remains to substitute into the Bs
p norm expression (15), and apply Jensen’s in-

equality appropriately. We show the main steps of this standard procedure only for
completeness:

‖f‖pBsp ≤ C
∞∑
l=0

2lsp(Ak,t
∑
j≤l

2−(l−j)t‖vkj ‖Lp +
∑
j>l

‖vkj ‖Lp)p

≤ Cε
∞∑
l=0

2lsp(Apk,t
∑
j≤l

2−(l−j)p(t−ε)‖vkj ‖
p
Lp +

∑
j>l

2(j−l)pε‖vkj ‖
p
Lp)

≤ Cε
∞∑
j=0

2jsp‖vkj ‖
p
Lp(A

p
k,t

∑
l≥j

2−(l−j)p(t−ε−s) +
∑
l<j

2(j−l)p(ε−s))

≤ Cε(1 + Apk,t)
∞∑
j=0

2jsp‖vkj ‖
p
Lp ,

where 0 < ε < min(s, t − s) can be fixed arbitrarily. Taking, e.g., ε = min(s, t −
s)/2, the constant Cε can made dependent on t (and s and p), only. Recall that the
decomposition of f into a sum of vkj ∈ V k

j was arbitrary, and take the infimum over all
such representations. This gives the upper estimate in (14), and concludes the argument
for Proposition 1 for 1 ≤ p < ∞. The case p < 1 is similar, the main change being the
use of the inequality ‖f + g‖pLp ≤ ‖f‖

p
Lp + ‖g‖pLp instead of the triangle inequality for

norms, Jensen’s inequality is not needed.

Proposition 1 characterizes Besov spaces as approximation spaces with respect to
the ladder {V k

j }j≥0. We can try to ”refine” this result by introducing Lp stable bases or
generating systems, as in the theory of finite element multilevel methods [12]. We present
a version suitable for the application to quarkonial systems, and look at generating
systems for the V k

j that are hierarchical in k in the following sense. Let us denote
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by Ψk
j = {ψkj,r : r ∈ Ij,k} a system of functions belonging to V k

j , k ≥ k0, such that
‖ψkj,r‖Lp ≈ 1, and the linear span of the system

Φk
j = ∪kl=k0Ψ

l
j (16)

is V k
j . We assume Lp stability properties, 0 < p <∞, of the system (16) as follows:

(L) For k = k0, we assume that for every vk0j ∈ V k0
j ∩Lp, there exists a decomposition

vk0j =
∑

r∈Ij,k0

ck0j,rψ
k0
j,r such that (

∑
r∈Ij,k0

|ck0j,r|p)1/p ≤ C‖vk0j ‖Lp .

(U) For k ≥ k0, we have an upper bound

‖
k∑

l=k0

∑
r∈Ij,l

clj,rψ
l
j,r‖Lp ≤ CAk(

k∑
l=k0

∑
r∈Ij,l
|clj,r|p)1/p

for all representations with respect to Φk
j for which the right-hand side is finite.

The possible dependence of the constant Ak on other parameters such as n, p is
not shown but it must be independent of the scale parameter j ≥ 0.

The construction in (16) is hierarchical, in the sense, that Φk+1
j ⊃ Φk

j is obtained by

adding the increment system Ψk+1
j . Based on these additional assumptions, it is easy to

show, that under the conditions of Proposition 1 the spaces Bp
s can also be characterized

in terms of weighted `p norms of the coefficients of decompositions with respect to the
union of all Φk

j , j ≥ 0, with equivalence constants depending on k via the constants Ak,t
and Ak from (B) and (U). More importantly, there is a choice of weights w̃ = {w̃k}k≥k0
such that the weighted system

Ψw̃ = {ψ̃kj,r := w̃kψkj,r : r ∈ Ij,k, k ≥ k0, j ≥ 0} (17)

is stable in Bs
p. Appropriate weight sequences w̃ can be computed explicitly, once esti-

mates for Ak,t and Ak are known. In the Hilbert space case p = 2, this has been already
done in [13].

Proposition 2 Let, in addition to the conditions of Proposition 1, assumptions (L) and
(U) be satisfied.
a) The system Φk := ∪j≥0Φ

k
j = ∪kl=k0 ∪j≥0 Ψl

j, k ≥ k0, is stable in Bs
p in the sense that

‖|f‖|∗p,s,k := inf
clj,r: f=

∑k

l=k0

∑∞
j=0

∑
r∈Ij,l

clj,rψ
l
j,r

(
k∑

l=k0

∞∑
j=0

∑
r∈Ij,l

2jsp|clj,r|p)1/p

represents an equivalent norm in Bs
p, σp < s < ŝp. More precisely, one has

c‖|f‖|∗p,s,k ≤ ‖f‖Bsp ≤ Ct(1 + Ak,t)Ak‖|f‖|∗p,s,k, f ∈ Bs
p, (18)
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for fixed t ∈ (s, ŝp), where the constants Ak,t and Ak are defined by (12) and (U), re-
spectively.
b) For an appropriate weight sequence w̃ depending on Ak,t and Ak and further param-
eters such as p and s, the system Ψw̃ defined in (17) is stable in Bs

p, i.e.,

‖|f‖|∗p,s := inf
c̃lj,r: f=

∑∞
l=k0

∑∞
j=0

∑
r∈Ij,l

c̃lj,rψ̃
l
j,r

(
∞∑
l=k0

∞∑
j=0

∑
r∈Ij,l

2jsp|c̃lj,r|p)1/p (19)

represents an equivalent norm in Bs
p, σp < s < ŝp.

Proof. Part a) is a straightforward consequence of Proposition 1 if one substitutes
(L) and (U) into the definition (13), to get lower and upper bounds of the form

‖|f‖|∗p,s,k ≤ ‖|f‖|∗p,s,k0 ≤ C‖|f‖|p,s,k0 ≤ C‖f‖Bsp ,

and
‖f‖Bsp ≤ Ct(1 + Ak,t)‖|f‖|p,s,k ≤ Ct(1 + Ak,t)Ak‖|f‖|∗p,s,k,

respectively.
For proving part b), we set w̃k0 = 1, the remaining w̃k > 0 will be determined below.

Then, the lower estimate

‖|f‖|∗p,s ≤ inf
c̃
k0
j,r: f=

∑∞
j=0

∑
r∈Ij,k0

c̃
k0
j,rψ̃

k0
j,r

(
∞∑
j=0

∑
r∈Ij,k0

2jsp|c̃k0j,r|p)1/p = ‖|f‖|∗p,s,k0 ≤ C‖f‖Bsp

follows from the case k = k0 in part a).
The upper estimate is equally straightforward if 0 < p ≤ 1. Take an arbitrary

decomposition

f =
∞∑
l=k0

∞∑
j=0

∑
r∈Ij,l

c̃lj,rψ̃
l
j,r =

∞∑
l=k0

f l,

where each term

f l :=
∞∑
j=0

∑
r∈Ij,l

(w̃lc̃lj,r)ψ
l
j,r

is represented with respect to Ψl and thus Φl, l ≥ k0. Again using part a), we can write

‖f‖pBsp ≤
∞∑
l=k0

‖f l‖pBsp ≤ C
∞∑
l=k0

(1 + Al,t)
pApl

∞∑
j=0

∑
r∈Ij,l

2jsp|w̃lc̃lj,r|p

≤ C(sup
l≥k0

w̃l(1 + Al,t)Al)
p
∞∑
l=k0

∞∑
j=0

∑
r∈Ij,l
|c̃lj,r|p.

In other words, choosing an appropriate value for t, and setting

w̃l := (1 + Ak0,t)Ak0((1 + Al,t)Al)
−1, l ≥ k0, (20)
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gives the desired result.
For the case 1 < p <∞, one gets a similar result upon starting the estimates using

‖f‖pBsp ≤ (
∑
l≥k0
‖f l‖Bsp)

p ≤ (
∞∑
l=k0

α−1
l )p−1

∑
l≥k0

αp−1
l ‖f l‖

p
Bsp
,

where the positive sequence {αk}k≥k0 is such that
∑∞
k=k0

α−1
k <∞. Continuing as above,

one gets a similar estimate, with an additional factor αl in the definition of w̃l. Since
we are interested in tight estimates for the weight sequences, a slightly better result can
be obtained if we split the arbitrarily given representation of f by setting

c̃lj,r =
∑
k≥l

c̃l,kj,r, c̃l,kj,r = αl,kc̃
l
j,r,

where the factors αl,k > 0,
∑
k≥l αl,k = 1, will be chosen below in an optimal way. Then,

f =
∞∑

k=k0

f̃k, f̃k :=
k∑

l=k0

∞∑
j=0

∑
r∈Ij,l

(w̃lc̃l,kj,r)ψ
l
j,r,

and, as indicated above,

‖f‖pBsp ≤ (
∞∑

k=k0

α−1
k )p−1

∞∑
k=k0

αp−1
k ‖f̃k‖

p
Bsp

≤ C
∞∑

k=k0

αp−1
k (1 + Ak,t)

pApk

k∑
l=k0

∞∑
j=0

∑
r∈Ij,l

2jsp|w̃lc̃l,kj,r|p

= C
∞∑
l=k0

∞∑
j=0

∑
r∈Ij,l

(w̃l)p
∞∑
k=l

αp−1
k (1 + Ak,t)

pApk2
jsp|c̃l,kj,r|p

= C
∞∑
l=k0

∞∑
j=0

∑
r∈Ij,l

2jsp|c̃lj,r|p((w̃l)p
∞∑
k=l

αp−1
k (1 + Ak,t)

pApkα
p
l,k).

Next we minimize this bound by choosing, for each j ≥ 0, l ≥ k0, r ∈ Ij,l, an appropriate
sequence {αl,k}k≥l satisfying the stated properties. Obviously, since for any sequence of
positive numbers ak the minimum

min
βk>0:

∑∞
k=l

βk=1

∞∑
k=l

akβ
p
k = (

∞∑
k=l

a
−1/(p−1)
k )−(p−1),

is achieved for a unique sequence β∗k provided the series in the right-hand side converges
(to see this, use Jensen’s inequality), we can apply this with ak = αp−1

k (1 + Ak,t)
pApk,

set αl,k = β∗k , and substitute the minimum value into the previous estimate. We get the
desired upper stability estimate

‖f‖pBsp ≤ C
∞∑
l=k0

∞∑
j=0

∑
r∈Ij,l

2jsp|c̃lj,r|p,
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if we set

w̃l =
w′l
w′k0

, w′l := (
∞∑
k=l

α−1
k ((1 + Ak,t)Ak)

−q)1/q, l ≥ k0, q = p/(p− 1). (21)

Convergence of the involved series is not an issue as Ak ≥ c > 0 and
∑∞
k=k0

α−1
k <∞ is

assumed. With {w̃l}l≥k0 defined by (20) for 0 < p ≤ 1 and by (21) for 1 < p < ∞, we
have proved part b) of Proposition 2 as well.

Remark 1. We note that under the assumption of algebraic growth in k for the
constants Ak,t and Ak, i.e., if

0 < c ≤ (1 + Ak,t)Ak ≤ Ckβ, k ≥ k0, β ≥ 0, (22)

then

wk =


(1+Ak0,t)Ak0
(1+Ak,t)Ak

≥ ck−β, 0 < p ≤ 1,

w′k
w′k0
≥ c(

∑
k≥l α

−1
k k−qβ)1/q ≥ cεk

−(β+ε), 1 < p <∞,
(23)

for arbitrary ε > 0 (set, e.g., αk = k−1−qε).

3 Application to Quarkonial Systems

Now we turn to the verification of the assumptions of Proposition 1 and 2 for quarkonial
systems of the form (1) associated with a point cloud Xj = {xj,i : i ∈ Ij} and PUs
{φj,i ∈ B ŝ

∞ : i ∈ Ij} satisfying the properties mentioned in Section 1 (to cover certain
examples as in Theorem 2 below, we replace the first condition in (3) by the weaker
finite overlap condition

#{i ∈ Ij : x ∈ BC2−j(xj,i)} ≤ C, x ∈ IRn. (24)

The spaces V k
j are generated by Φk

j := {q̃γj,i : i ∈ Ij, |γ| ≤ k}, where q̃γj,i is a scaled
version of qγj,i such that

‖q̃γj,i‖Lp ≈ 1, γ ∈ ZZn+, i ∈ Ij, j ≥ 0.

We caution the reader that this implies that the systems are scaled differently for different
values of p ∈ (0,∞). Note that (8) is automatically satisfied, and that by identifying,
for given k0, the systems Ψk0

j with Φk0
j , and Ψk

j with {q̃γj,i : i ∈ Ij, |γ| = k} for k > k0,
respectively, we are in the setting covered by Proposition 1 and 2. In the process of
verifying the conditions (J), (B), (L), and (U), we will introduce further restrictions on
the PUs. These restrictions will be briefly motivated, and further commented on in the
next section. Let us first deal with (J) and (L) which concern the derivation of lower
bounds, and involve properties of the ladder {V k0

j }j≥0 for some fixed k0.

Lemma 1 Let 0 < p < ∞, σp < s < ŝ, and assume that the ladder {V k
j }j≥0 satisfies

(9). Then (J) holds for any k0 > s− 1.

11



Proof. We sketch the standard argument. Let Qj,i be the cube of side-length C2−j+1

centered at xj,i containing the ball BC2−j(xj,i) ⊃ suppφj,i, see (2). According to (2),
the family Qj,i, i ∈ Ij, has finite overlap, i.e., card{i ∈ Ij : x ∈ Qj,i} ≤ C for some
constant independent on j. According to Whitney’s theorem, for any f ∈ Lp, there
exists a polynomial of degree k0 such that

‖f − Pj.i‖Lp(Qj,i) ≤ Cωk0+1(2
−j, f)Lp(Qj,i), i ∈ Ij, j ≥ 0.

Thus, the functions uk0j :=
∑
i∈Ij φj,iPj,i ∈ V

k0
j , satisfy

‖f − uk0j ‖
p
Lp =

∫
IRn
|
∑
i∈Ij

φj,i(x)(f(x)− Pj,i(x))|p dx

≤ C
∑
i∈Ij
‖f − Pj,i‖pLp(Qj,i) ≤ C

∑
i∈Ij

ωk0+1(2
−j, f)pLp(Qj,i)

≤ Cωk0+1(2
−j, f)pLp .

Here we have used the finite overlap property of the Qj,i several times, the uniform
boundedness of the PU functions φj,i, and properties of the moduli of smoothness on
cubes, in order to formally facilitate the last step of the estimation. More precisely, the
inequality

ωm(δ, f)pLp(Q) ≈ δ−m
∫
Bδ(0)
‖∆m

h ‖
p
Lp(Qm,h) dh, 0 < δ < 1/(2m),

valid for the unit cube Q = [0, 1]n, is sufficient for this purpose. This type of reasoning
is at the core of proving approximation results for the PUM, see [11, 17], it does not
require the monotonicity assumption (9).

The latter is needed only to show that the terms vk0j in the telescopic sum represen-
tation

f =
∞∑
j=0

vk0j , vk00 = uk00 , v
k0
j = uk0j − uk0j−1, j ≥ 1,

also belong to V k0
j . The rest is standard:

∞∑
j=0

2jsp‖vk0j ‖
p
Lp ≤ C(‖f‖pLp +

∞∑
j=0

2jsp‖f − uk0j ‖
p
Lp)

≤ C(‖f‖pLp +
∞∑
j=0

2jspωk0+1(2
−j, f)pLp) ≤ C‖f‖pBsp ,

where the last step requires k0 > s− 1 and follows from the definition (15). This proves
Lemma 1. Whether the monotonicity assumption (9) can be removed or significantly
weakened is open.

Next we consider property (L). Without further conditions, it may easily fail for V k
j

generated by a generically constructed quarkonial system. The failure of Lp stability

12



for generating systems in PUM spaces is one of the drawbacks of the method, see [1]
for the discussion of alternatives. For example, look at a shift-invariant construction
for IR1, where φ(x) = (1 − |x|)+ is the hat function, and set k0 = 1. The resulting V 1

j

is a subspace of the space of quadratic C0 splines with knot sequence Xj = 2−jZZ, and
consists of all functions

Φ1
j = {q̃0

j,i(x) = 2j/pφ(2jx− i), q̃1
j,i(x) = 2j/p(2jx− i)φ(2jx− i)}i∈ZZ

is a basis in V 1
j which is not Lp stable: Consider

v1
j,N =

N∑
i=1

q̃1
j,i ∈ V 1

j , N →∞,

and check that ‖v1
j,N‖Lp ≈ 1 while the `p norm of the coefficients grows as N1/p.

The problem with this example is that the basis Φ1
j fails to be locally linear inde-

pendent in V 1
j . This is a useful notion for PUM spaces, see [7] for a discussion. We give

here only simple sufficient conditions for (L) to hold.

Lemma 2 a) Let Φ0
j be an Lp stable, normalized basis in its span V 0

j , i.e.,

c(
∑
i∈Ij
|ci|p)1/p ≤ ‖

∑
i∈Ij

ciφ̃j,i‖Lp ≤ C(
∑
i∈Ij
|ci|p)1/p,

with constants independent of j, where φ̃j,i = q̃0
j,i are the Lp normalized PU functions.

Then (L) holds for k0 = 0.
b) Let the PUs {φj,i : i ∈ Ij} have small overlap, i.e., for each i ∈ Ij and j ≥ 0, we
have φj,i(x) = 1 on a certain ball Bc2−j(yj,i). Then (L) holds for any k0 ≥ 0, albeit with
constants exponentially depending on k0, if we take Φk0

j as generating set Ψk0
j in V k0

j .

Proof. Part a) is obvious, we have included it because it is often satisfied for PUs based
on spline and finite element constructions. E.g., it holds for the PUs based on linear
finite element functions such as in the above counterexample. For part b), the statement
follows since on each ball Bc2−j(yj,i) ⊂ suppφj,i ⊂ BC2−j(xj,i) any vk0j coincides with the
polynomial pi =

∑
|γ|≤k0 c

γ
j,iq̃

γ
j,i of degree ≤ k0. This allows us to recover the coefficients

cγj,i, |γ| ≤ k0, and prove that∑
|γ|≤k0

|cγj,i|p ≤ CÃpk0‖pi‖
p
B
c2−j (yj,i)

= CÃpk0‖v
k0
j ‖

p
B
c2−j (yj,i)

.

That the constants in this estimate can be chosen independently of j and i (but not of
k0) follows from 1 ≈ ‖q̃γj,i‖Lp ≈ ‖q̃

γ
j,i‖Bc2−j (yj,i) and a compactness argument. Summation

with respect to i ∈ Ij gives the statement.

In contrast to (L), the verification of (U) is easy, at least if we are not after best
possible constants, and is solely based on the finite overlap property of Φk

j . Indeed,
simple counting based on the assumption (24) yields

#{(i, γ) : x ∈ supp q̃γj,i, i ∈ Ij, |γ| ≤ k} ≤ Ckn.

13



Thus, because of the assumed normalization ‖q̃γj,i‖Lp ≈ 1 we have

‖
∑
|γ|≤k

∑
i∈Ij

cγj,iq̃
γ
j,i‖

p
Lp ≤ Ckn(max(p,1)−1)

∑
|γ|≤k

∑
i∈Ij
‖cγj,iq̃

γ
j,i‖

p
Lp

≤ Ckn(max(p,1)−1)
∑
|γ|≤k

∑
i∈Ij
|cγj,i|p.

Since n(max p, 1)− 1)/p = n(1− 1/p)+, we have proved

Lemma 3 The quarkonial system Φk
j satisfies (U) with constant Ak = kn(1−1/p)+.

Finally, we turn to the Bernstein inequality (B). Our conjecture is that, at least
for 1 ≤ p ≤ ∞ and under generic assumptions on the PUs, it holds with a constant
Ak,s = (k+ 1)2s but currently we are able to establish such results only for PUs given by
piecewise polynomial functions. To keep the technical details to a minimum, consider
n = 1, and assume that the PU functions φj,i, i ∈ Ij, are CR B-splines of some fixed
degree K ≥ R+ 1 with respect to a quasi-uniform partition Tj of mesh-width ≈ 2−j (as
xj,i, take any point in the support of φj,i). Then V k

j , k ≥ 0, consists of CR splines of
degree K + k with respect to the same Tj. Here R ≥ −1 is integer, meaning that for
R = −1 there are no global smoothness requirements, and we talk about non-smooth,
piecewise polynomials of degree K + k.

Lemma 4 Let V k
j , j ≥ 0, be the CR spline spaces of degree k̃ := K + k over quasi-

uniform partitions Tj of IR with mesh-width ≈ 2−j, as described before. Then, for all
vkj ∈ V k

j ∩ Lp, we have

ωR+2(δ, v
k
j )Lp ≤

{
min(2R+2, C(k̃22jδ)R+1+1/p), 1 ≤ p <∞,
min(2(R+2)/p, Ck̃(R+2)/p(2jδ)R+1+1/p), 0 < p < 1.

(25)

and the following Bernstein-type inequality holds for 0 < s < R + 1 + min(1, 1/p):

‖vkj ‖Bsp ≤ Ck̃2s(R+2)/(R+1+max(1,1/p))2js‖vkj ‖Lp . (26)

Proof. Let 1 ≤ p < ∞, set without loss of generality j = 0, and consider an
arbitrary v ∈ V k

0 ∩ Lp(IR). If h ≥ ck̃−2 for some fixed c, then the inequality (25) follows
from

‖∆R+2
h v‖Lp ≤ 2‖∆R+1

h v‖Lp ≤ . . . ≤ 2R+2‖v‖Lp .

For 0 < h < c(k̃ − (R + 1))−2, we use v ∈ WR+1
p (IR) and

‖∆m
h f‖Lp =

(∫
IR

∣∣∣∣∣
∫ x+h

x
∆m−1
h f ′(s) ds

∣∣∣∣∣
p

dx

)1/p

≤ h‖∆m−1
h f ′‖Lp , f ∈ W 1

p (IR), (27)

recursively (R + 1)-times:

‖∆R+2
h v‖Lp ≤ hR+1‖∆hv

(R+1)‖Lp ,
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where v(R+1) is now a piecewise polynomial function of degree k̃ − (R+ 1) with respect
to T0. If we denote the intervals in this partition by Ji = [xi, xi+1] and by Pi = v|Ji the
associated polynomials of degree k̃ then

‖∆hv
(R+1)‖pLp ≤

∑
i

(
∫ xi

xi−h
|∆hv

(R+1)(x)|p dx+
∫ xi+1

xi
|∆hv

(R+1)(x)|p dx)

≤ C
∑
i

(‖P (R+1)
i ‖pLp([xi,xi+h]) + ‖P (R+1)

i ‖pLp([xi+1−h,xi+1]) + hp‖P (R+2)
i ‖pLp(Ji)).

Since the intervals Ji are of length ≈ 1, standard inequalities for polynomials (see para-
graphs 4.8.72 and 4.9.6 in [19]) imply for the given range of h that

‖P (R+1)
i ‖pLp([xi,xi+h]) + ‖P (R+1)

i ‖pLp([xi+1−h,xi+1]) ≤ Ch(k̃ − (R + 1))2‖P (R+1)
i ‖pLp(Ji). (28)

Now apply the Lp Markov inequality [15] for polynomials P of degree m,

‖P ′‖Lp(Ji) ≤ C(xi+1 − xi)−1m2‖P‖Lp(Ji), (29)

to the terms ‖P (R+1)
i ‖Lp(Ji) and ‖P (R+2)

i ‖Lp(Ji), and substitute in the previous estimate:

‖∆R+2
h v‖pLp ≤ Ch(R+1)p(h(k̃ − (R + 1))2

R∏
l=0

(k̃ − l)2p + hp
R+1∏
l=0

(k̃ − l)2p)
∑
i

‖Pi‖pLp

≤ C(hk̃2)(R+1)p+1‖v‖pLp , 0 < h < ck̃−2.

If one takes the supremum for 0 < h ≤ δ, this covers the case 1 ≤ p < ∞ and j = 0
of (25), the case of arbitrary j follows by dilation. What concerns 0 < p < 1, the proof
is similar. The triangle inequality is to be substituted by ‖f + g‖pLp ≤ ‖f‖

p
Lp + ‖g‖pLp ,

resulting in the term 2(R+2)/p instead of 2R+2. The estimation (27) cannot hold for
general f , one has to use the fact that v (and its derivatives) are piecewise polynomials
for which a Nikolski-type inequality [19, Section 4.9.6] gives, e.g.,∫

IR

∣∣∣∣∣
∫ x+h

x
v(s) ds

∣∣∣∣∣
p

dx ≤
∫
IR

(‖v‖L1(x,x+h))
p dx

≤ (Ch1−1/pk̃2(1/p−1))p
∫
IR
‖v‖Lp(x,x+h) dx = Chpk̃2(1−p)‖v‖pLp .

With these changes, the statement of (25) in Lemma 4 can be established also for
0 < p < 1.

Finally, (26) follows from (25) as follows. Let first 1 ≤ p < ∞, choose j0 ≥ j such
that 2j0 ≈ 2j k̃2, and substitute (25) into the definition (15) of the Besov spaces for
m = R + 2 ≥ R + 1 + 1/p > s > 0:

‖vkj ‖
p
Bsp
≤ C‖vkj ‖

p
Lp(1 +

∑
l≤j0

2lsp + k̃2((R+1)p+1)
∑
l>j0

2lsp2(j−l)((R+1)p+1))

≤ C‖vkj ‖
p
Lp(1 + 2j0sp + 2j0sp(k̃2j−j0)(R+1)p+1)

≤ C2j0sp‖vkj ‖
p
Lp ≤ C2jspk̃2sp‖vkj ‖

p
Lp ,
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where the definition of j0 and 0 < s < R+1+1/p have been used. The case 0 < p < 1 is
similar, now j0 ≥ j needs to be taken such that 2j0 ≈ 2j k̃2(R+2)/(R+1+1/p). These details
are left to the reader. Lemma 4 is proved.

The following result is an immediate corollary of Lemmas 1-4 and Proposition 2. It
shows an instance, where the necessary scaling grows algebraically in the polynomial
degree, and not exponentially as in (4).

Theorem 2 Under the conditions of Lemma 4, i.e., for n = 1 and PUs {φj,i : i ∈ Ij}
consisting of CR B-splines of degree K w.r.t. to a sequence of nested quasi-uniform
partitions Tj of mesh-width ≈ 2−j, the scaled quarkonial system

Q̃ := {k−αq̃kj,i : i ∈ Ij, j, k ≥ 0},

where q̃kj,i(x) = w̃kj,i(x)(x − xj,i)kφj,i is Lp normalized (‖q̃γj,i‖Lp ≈ 1), is stable in Bs
p for

0 < s < R + 1 + min(1, 1/p) if

α >

{
2s+ 1− 1/p, 1 ≤ p <∞,
2s(R + 2)/(R + 1 + 1/p), 0 < p < 1.

(30)

In other words, for the indicated range of s and α

‖f‖Bsp ≈ ‖|f‖|
∗∗
p,s,α := inf

ckj,i: f=
∑∞

k=0

∑∞
j=0

∑
i∈Ij

ckj,iq̃
k
j,i

(
∞∑
k=0

∞∑
j=0

∑
i∈Ij

kαp2jsp|ckj,i|p)1/p. (31)

Proof. Since the introduced B-spline PUs are refinable, (9) holds and Lemma 1
applies for any given k0 > s− 1 (in this case, due to available results for spline approx-
imation, the Jackson-type estimate (J) also holds with k0 = 0 if 0 < s < K + 1 which
covers the range of s considered in Theorem 2). Lemma 2 also holds with k0 = 0 since
B-spline PUs are Lp-stable. Lemma 3 holds with constant Ak = k(1−1/p)+ . Finally, we
have the Bernstein estimate (26) with a constant

Ak,t = k2t(R+2)/(R+1+max(1,1/p)), 0 < t < R + 1 + min(1, 1/p).

Altogether Theorem 2 follows from Proposition 2 and Remark 1, the norm equivalence
(31) is a reformulation of (19), the weights k−α in the definition of Q̃ have been included
in the coefficient norm.

Remark 2. We do not claim that the parameter range (30) is optimal, nor that
the conditions of Lemmas 1-4 are final. In particular, it would be interesting to extend
Lemma 4 to PUs not consisting of piecewise polynomial functions. Even in the shift-
invariant case, where the PUs are generated by the shifts and dilates of a single compactly
supported (refinable and sufficiently smooth) function φ, a statement is missing. Another
possible improvement concerns Lemma 3, and consists in a more careful choice of the
generating systems in the polynomial spaces: Instead of the ill-conditioned system of
monomials {(x − xj,i)

γ, γ ∈ ZZn+}, other sets should be considered, see [16] for the
hp-FEM case.
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Remark 3. For future applications to design adaptive MPUM (see [17]) based on
stable quarkonial systems, it is desirable to work out the case p = 2 in greater detail.
A first step has been done in [14] in a special case (PUs consisting of characteristic
functions, and quarkonial functions generated by Legendre polynomials). An additional
challenge is to modify the construction of quarkonial systems such that moment con-
ditions of sufficiently high order hold for the q̃γj,i at least for j ≥ 1. One option is to
proceed in analogy to the modifications proposed by Triebel [21, 22] for covering the
range s ≤ σp, another one to use lifting techniques as explored in wavelet theory.
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[2] I. Babuška, M. Suri, The p- and h-p versions of the finite element method. An
overview. Comput. Meth. Appl. Mech. Engrg. 80, 1990, 5–26.

[3] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods. Funda-
mentals in Single Domain, Springer, Berlin, 2006.

[4] P. Casazza, O. Christensen, D. T. Stoeva, Frame expansions in separable Banach
spaces, J. Math. Anal. Appl. 307, 2005, 710–723.

[5] A. Cohen, Numerical Analysis of Wavelet Methods, Elsevier, Amsterdam, 2003.

[6] W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer-
ica 6, 1997, 55–228.

[7] S. Dekel, W. Dahmen, P. Petrushev, Multilevel preconditioning for partition of
unity methods - some analytic concepts, Numer. Math. 107, 2007, 503–532.

[8] C.A. Duarte, J.T. Oden, An h-p adaptive method using clouds, Comput. Methods
Appl. Mech. Engrg. 139, 1996, 237–262.

[9] C. Gauger, P. Leinen, H. Yserentant, The finite mass method, SIAM J.Numer.
Anal. 37, 2000, 1768–1799.
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